Skip to main content

Simulation Strategies for Calcium Microdomains and Calcium-Regulated Calcium Channels

  • Chapter
  • First Online:
Calcium Signaling

Abstract

In this article, we present an overview of simulation strategies in the context of subcellular domains where calcium-dependent signaling plays an important role. The presentation follows the spatial and temporal scales involved and represented by each algorithm. As an exemplary cell type, we will mainly cite work done on striated muscle cells, i.e. skeletal and cardiac muscle. For these cells, a wealth of ultrastructural, biophysical and electrophysiological data is at hand. Moreover, these cells also express ubiquitous signaling pathways as they are found in many other cell types and thus, the generalization of the methods and results presented here is straightforward.

The models considered comprise the basic calcium signaling machinery as found in most excitable cell types including Ca2+ ions, diffusible and stationary buffer systems, and calcium regulated calcium release channels. Simulation strategies can be differentiated in stochastic and deterministic algorithms. Historically, deterministic approaches based on the macroscopic reaction rate equations were the first models considered. As experimental methods elucidated highly localized Ca2+ signaling events occurring in femtoliter volumes, stochastic methods were increasingly considered. However, detailed simulations of single molecule trajectories are rarely performed as the computational cost implied is too large. On the mesoscopic level, Gillespie’s algorithm is extensively used in the systems biology community and with increasing frequency also in models of microdomain calcium signaling. To increase computational speed, fast approximations were derived from Gillespie’s exact algorithm, most notably the chemical Langevin equation and the τ-leap algorithm. Finally, in order to integrate deterministic and stochastic effects in multiscale simulations, hybrid algorithms are increasingly used. These include stochastic models of ion channels combined with deterministic descriptions of the calcium buffering and diffusion system on the one hand, and algorithms that switch between deterministic and stochastic simulation steps in a context-dependent manner on the other. The basic assumptions of the listed methods as well as implementation schemes are given in the text. We conclude with a perspective on possible future developments of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller DX, Franks KM, Bartol TM, Sejnowski TJ (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3:e2045

    Article  PubMed  Google Scholar 

  2. Zeng S, Holmes WR (2010) The effect of noise on CaMKII activation in a dendritic spine during LTP induction. J Neurophysiol 103:1798–1808

    Article  PubMed  CAS  Google Scholar 

  3. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793(6):933–940

    Article  PubMed  CAS  Google Scholar 

  4. Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1:137–151

    Article  PubMed  CAS  Google Scholar 

  5. Franks KM, Bartol TM, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348

    Article  PubMed  CAS  Google Scholar 

  6. Shahrezaei V, Delaney KR (2004) Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: A Monte Carlo study. Biophys J 87:2352–2364

    Article  PubMed  CAS  Google Scholar 

  7. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  PubMed  CAS  Google Scholar 

  8. Gardiner C (2004) Handbook of stochastic methods for physics, chemistry and the natural sciences, 3rd edn, Springer series in synergetics. Springer, New York

    Google Scholar 

  9. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  10. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889

    Article  CAS  Google Scholar 

  11. Li H, Hou Z, Xin H (2005) Internal noise stochastic resonance for intracellular calcium oscillations in a cell system. Phys Rev E 71:061916

    Article  Google Scholar 

  12. Kummer U, Krajnc B, Pahle J, Green AK, Dixon CJ, Marhl M (2005) Transition from stochastic to deterministic behavior in calcium oscillations. Biophys J 89:1603–1611

    Article  PubMed  CAS  Google Scholar 

  13. von Wegner F, Fink RHA (2010) Stochastic simulation of calcium microdomains in the vicinity of an L-type calcium channel. Eur Biophys J 39:1079–1088

    Article  CAS  Google Scholar 

  14. Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113:297–306

    Article  CAS  Google Scholar 

  15. Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size selection for the tau-leaping simulation method. J Chem Phys 124:044109

    Article  PubMed  Google Scholar 

  16. Tian T, Burrage K (2004) Binomial leap methods for simulating stochastic chemical kinetics. J Chem Phys 121:10356–10364

    Article  PubMed  CAS  Google Scholar 

  17. Choi T, Maurya MR, Tartakovsky DM, Subramaniam S (2010) Stochastic hybrid modeling of intracellular calcium dynamics. J Chem Phys 133:165101

    Article  PubMed  Google Scholar 

  18. Manninen T, Linne M-L, Ruohonen K (2006) Developing Ito stochastic differential equation models for neuronal signal transduction pathways. Comput Biol Chem 30:280–291

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Hou Z, Xin H (2004) System-size biresonance for intracellular calcium signaling. Chemphyschem 5:1041–1045

    Article  PubMed  CAS  Google Scholar 

  20. Zhu C-L, Jia Y, Liu Q, Yang L-J, Zhan X (2006) A mesoscopic stochastic mechanism of cytosolic calcium oscillations. Biophys Chem 125:201–212

    Article  PubMed  Google Scholar 

  21. Winslow RL, Tanskanen A, Chen M, Greenstein JL (2006) Multiscale modeling of calcium signaling in the cardiac dyad. Ann NY Acad Sci 1080:362–375

    Article  PubMed  CAS  Google Scholar 

  22. Cannell MB, Soeller C (1997) Numerical analysis of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys J 73:112–122

    Article  PubMed  CAS  Google Scholar 

  23. Soeller C, Cannell MB (1997) Numerical simulation local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J 73:97–111

    Article  PubMed  CAS  Google Scholar 

  24. Smith GD, Keizer JE, Stern MD, Lederer WJ, Cheng H (1998) A simple numerical model of calcium spark formation and detection in cardiac myocytes. Biophys J 75:15–32

    Article  PubMed  CAS  Google Scholar 

  25. Jiang YH, Klein MG, Schneider MF (1999) Numerical simulation of Ca2+ “sparks” in skeletal muscle. Biophys J 77:2333–2357

    Article  PubMed  CAS  Google Scholar 

  26. Baylor SM, Hollingworth S (2007) Simulation of Ca2+ movements within the sarcomere of fast-switch mouse fibers stimulated by action potentials. J Gen Physiol 130(3):283–302

    Article  PubMed  CAS  Google Scholar 

  27. Stern MD, Pizarro G, Rios E (1997) Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol 110:415–440

    Article  PubMed  CAS  Google Scholar 

  28. Greenstein JL, Winslow RL (2002) An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J 83:2918–2945

    Article  PubMed  CAS  Google Scholar 

  29. Rüdiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M (2007) Hybrid stochastic and deterministic simulations of calcium blips. Biophys J 93:1847–1857

    Article  PubMed  Google Scholar 

  30. Kalantzis G (2009) Hybrid stochastic simulations of intracellular reaction–diffusion systems. Comput Biol Chem 33:205–215

    Article  PubMed  CAS  Google Scholar 

  31. Krishnamurty V, Chung SH (2007) Large scale dynamical models and estimation for permeation in biological membrane ion channels. Proc IEEE 95:853–880

    Article  Google Scholar 

  32. Elf J, Doncic A, Ehrenberg M (2003) Mesoscopic reaction–diffusion in intracellular signaling. SPIE Proc 5110:114–125

    Article  CAS  Google Scholar 

  33. Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. Proc Natl Acad Sci USA 104(48):18958–18963

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic von Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

von Wegner, F., Wieder, N., Fink, R.H.A. (2012). Simulation Strategies for Calcium Microdomains and Calcium-Regulated Calcium Channels. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_25

Download citation

Publish with us

Policies and ethics