Calcium Binding Proteins

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 740)


The role of Ca2+ as a key and pivotal second messenger in cells depends largely on a wide number of heterogeneous so-called calcium binding proteins (CBP), which have the ability to bind this ion in specific domains. CBP contribute to the control of Ca2+ concentration in the cytosol and participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e., decoding Ca2+ signals. In this chapter we review the main Ca2+-modulated CBP, starting with those intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins and calcineurin. Then, we address intracellular CBP lacking the EF-hand domain: CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), annexins and proteins that contain a C2 domain, such as protein kinase C (PKC) or sinaptotagmin. Finally, extracellular CBP have been classified in six groups, according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) γ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors. For all proteins, we briefly review their structure, location and function and additionally their potential as pharmacological targets in several human diseases.


Ca2+ binding proteins EF-hand domain Ca2+ sensors 


  1. 1.
    Carafoli E, Santella L, Branca D, Brini M (2001) Generation, control, and processing of ­cellular calcium signals. Crit Rev Biochem Mol Biol 36:107–260PubMedCrossRefGoogle Scholar
  2. 2.
    Permyakov EA, Kretsinger RH (2011) Calcium binding proteins. Wiley, HobokenGoogle Scholar
  3. 3.
    Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326PubMedGoogle Scholar
  4. 4.
    Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10:637–643PubMedCrossRefGoogle Scholar
  5. 5.
    Tsigelny I, Shindyalov IN, Bourne PE, Sudhof TC, Taylor P (2000) Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Protein Sci 9:180–185PubMedCrossRefGoogle Scholar
  6. 6.
    Milner-White EJ (1999) The N-terminal domain of MDM2 resembles calmodulin and its relatives. J Mol Biol 292:957–963PubMedCrossRefGoogle Scholar
  7. 7.
    van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W, Dijkstra BW (1999) Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure 7:1167–1180PubMedCrossRefGoogle Scholar
  8. 8.
    Nakayama N, Kawasaki H, Kretsinger R (2000) Evolution of EF-hand proteins. In: Carafoli E, Krebs J (eds) Calcium homeostasis, topics in biological inorganic chemistry. Springer, Berlin, pp 29–58Google Scholar
  9. 9.
    Skelton NJ, Kordel J, Akke M, Forsen S, Chazin WJ (1994) Signal transduction versus buffering activity in Ca2+-binding proteins. Nat Struct Biol 1:239–245PubMedCrossRefGoogle Scholar
  10. 10.
    Holmes KC (1996) Muscle proteins–their actions and interactions. Curr Opin Struct Biol 6:781–789PubMedCrossRefGoogle Scholar
  11. 11.
    Arif SH (2009) A Ca2+-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. Bioessays 31:410–421PubMedCrossRefGoogle Scholar
  12. 12.
    Deuticke HJ (1934) Über die Sedimentationskonstante von Muskelproteinen. Hoppe Seylers Z Physiol Chem 224:216–228CrossRefGoogle Scholar
  13. 13.
    Pechere JF (1968) Muscular parvalbumins as homologous proteins. Comp Biochem Physiol 24:289–295PubMedCrossRefGoogle Scholar
  14. 14.
    Schaub MC, Heizmann CW (2008) Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 369:247–264PubMedCrossRefGoogle Scholar
  15. 15.
    Heizmann CW (1984) Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia 40:910–921PubMedCrossRefGoogle Scholar
  16. 16.
    Gerday C, Gillis JM (1976) Proceedings: the possible role of parvalbumins in the control of contraction. J Physiol 258:96P–97PPubMedGoogle Scholar
  17. 17.
    Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 17:2094–2107PubMedCrossRefGoogle Scholar
  18. 18.
    Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun 38:533–538PubMedCrossRefGoogle Scholar
  19. 19.
    Kakiuchi S, Yamazaki R (1970) Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3′,5′-nucleotide phosphodiesterase (3). Biochem Biophys Res Commun 41:1104–1110PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen P, Klee CB (1988) Calmodulin. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Jurado LA, Chockalingam PS, Jarrett HW (1999) Apocalmodulin. Physiol Rev 79:661–682PubMedGoogle Scholar
  22. 22.
    Igarashi M, Watanabe M (2007) Roles of calmodulin and calmodulin-binding proteins in synaptic vesicle recycling during regulated exocytosis at submicromolar Ca2+ concentrations. Neurosci Res 58:226–233PubMedCrossRefGoogle Scholar
  23. 23.
    Kawasaki H, Kretsinger RH (1994) Calcium-binding proteins. 1: EF-hands. Protein Profile 1:343–517PubMedGoogle Scholar
  24. 24.
    Toutenhoofd SL, Strehler EE (2000) The calmodulin multigene family as a unique case of genetic redundancy: multiple levels of regulation to provide spatial and temporal control of calmodulin pools? Cell Calcium 28:83–96PubMedCrossRefGoogle Scholar
  25. 25.
    Iwatsubo T, Nakano I, Fukunaga K, Miyamoto E (1991) Ca2+/calmodulin-dependent protein kinase II immunoreactivity in Lewy bodies. Acta Neuropathol 82:159–163PubMedCrossRefGoogle Scholar
  26. 26.
    McLachlan DR, Wong L, Bergeron C, Baimbridge KG (1987) Calmodulin and calbindin D28K in Alzheimer disease. Alzheimer Dis Assoc Disord 1:171–179PubMedCrossRefGoogle Scholar
  27. 27.
    Ali M, Ponchel F, Wilson KE, Francis MJ, Wu X, Verhoef A, Boylston AW, Veale DJ, Emery P, Markham AF, Lamb JR, Isaacs JD (2001) Rheumatoid arthritis synovial T cells regulate transcription of several genes associated with antigen-induced anergy. J Clin Invest 107:519–528PubMedCrossRefGoogle Scholar
  28. 28.
    Perry SV, Corsi A (1958) Extraction of proteins other than myosin from the isolated rabbit myofibril. Biochem J 68:5–12PubMedGoogle Scholar
  29. 29.
    Gillis TE, Marshall CR, Tibbits GF (2007) Functional and evolutionary relationships of troponin C. Physiol Genomics 32:16–27PubMedCrossRefGoogle Scholar
  30. 30.
    Moore BW, McGregor D (1965) Chromatographic and electrophoretic fraction of soluble proteins of brain and liver. J Biol Chem 240:1647–1653PubMedGoogle Scholar
  31. 31.
    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G, Yang JJ (2006) Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 65:643–655PubMedCrossRefGoogle Scholar
  33. 33.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277:4578–4590PubMedCrossRefGoogle Scholar
  34. 34.
    Nishikawa T, Lee IS, Shiraishi N, Ishikawa T, Ohta Y, Nishikimi M (1997) Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage. J Biol Chem 272:23037–23041PubMedCrossRefGoogle Scholar
  35. 35.
    Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540–551PubMedCrossRefGoogle Scholar
  36. 36.
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214PubMedCrossRefGoogle Scholar
  37. 37.
    Heizmann CW, Ackermann GE, Galichet A (2007) Pathologies involving the S100 proteins and RAGE. Subcell Biochem 45:93–138PubMedCrossRefGoogle Scholar
  38. 38.
    Klee CB, Krinks MH (1978) Purification of cyclic 3′,5′-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry 17:120–126PubMedCrossRefGoogle Scholar
  39. 39.
    Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521PubMedGoogle Scholar
  40. 40.
    Li J, Jia Z, Zhou W, Wei Q (2009) Calcineurin regulatory subunit B is a unique calcium sensor that regulates calcineurin in both calcium-dependent and calcium-independent manner. Proteins 77:612–623PubMedCrossRefGoogle Scholar
  41. 41.
    Li H, Rao A, Hogan PG (2011) Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol 21:91–103PubMedCrossRefGoogle Scholar
  42. 42.
    Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas JA, Ferrús A (1993) Frequenin -a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11:15–28PubMedCrossRefGoogle Scholar
  43. 43.
    Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193PubMedCrossRefGoogle Scholar
  44. 44.
    McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2:a004085PubMedCrossRefGoogle Scholar
  45. 45.
    Braunewell KH (2005) The darker side of Ca2+ signaling by neuronal Ca2+-sensor proteins: from Alzheimer’s disease to cancer. Trends Pharmacol Sci 26:345–351PubMedCrossRefGoogle Scholar
  46. 46.
    Renner M, Danielson MA, Falke JJ (1993) Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Proc Natl Acad Sci USA 90:6493–6497PubMedCrossRefGoogle Scholar
  47. 47.
    Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221PubMedCrossRefGoogle Scholar
  48. 48.
    Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28 Spec No Focus:F96–F103PubMedGoogle Scholar
  49. 49.
    Ashby MC, Tepikin AV (2001) ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol 12:11–17PubMedCrossRefGoogle Scholar
  50. 50.
    Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465PubMedGoogle Scholar
  51. 51.
    Gelebart P, Opas M, Michalak M (2005) Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37:260–266PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, Papp S, De Smedt H, Parys JB, Muller-Esterl W, Lew DP, Krause KH, Demaurex N, Opas M, Michalak M (2001) Functional specialization of calreticulin domains. J Cell Biol 154:961–972PubMedCrossRefGoogle Scholar
  53. 53.
    Villamil Giraldo AM, Lopez Medus M, Gonzalez Lebrero M, Pagano RS, Labriola CA, Landolfo L, Delfino JM, Parodi AJ, Caramelo JJ (2010) The structure of calreticulin C-terminal domain is modulated by physiological variations of calcium concentration. J Biol Chem 285:4544–4553PubMedCrossRefGoogle Scholar
  54. 54.
    Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277:46696–46705PubMedCrossRefGoogle Scholar
  55. 55.
    Trombetta ES (2003) The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13:77R–91RPubMedCrossRefGoogle Scholar
  56. 56.
    Zhu N, Wang Z (1999) Calreticulin expression is associated with androgen regulation of the sensitivity to calcium ionophore-induced apoptosis in LNCaP prostate cancer cells. Cancer Res 59:1896–1902PubMedGoogle Scholar
  57. 57.
    MacLennan DH, Wong PT (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68:1231–1235PubMedCrossRefGoogle Scholar
  58. 58.
    Novák P, Soukup T (2011) Calsequestrin distribution, structure and function, its role in normal and pathological situations and the effect of thyroid hormones. A review. Physiol Res 60:439–452PubMedGoogle Scholar
  59. 59.
    Milstein ML, Houle TD, Cala SE (2009) Calsequestrin isoforms localize to different ER subcompartments: evidence for polymer and heteropolymer-dependent localization. Exp Cell Res 315:523–534PubMedCrossRefGoogle Scholar
  60. 60.
    Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128PubMedCrossRefGoogle Scholar
  61. 61.
    Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131:325–334PubMedCrossRefGoogle Scholar
  62. 62.
    Mitchell RD, Simmerman HK, Jones LR (1988) Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem 263:1376–1381PubMedGoogle Scholar
  63. 63.
    Wei L, Hanna AD, Beard NA, Dulhunty AF (2009) Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle. Cell Calcium 45:474–484PubMedCrossRefGoogle Scholar
  64. 64.
    Gyorke S, Gyorke I, Terentyev D, Viatchenko-Karpinski S, Williams SC (2004) Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes. Biol Res 37:603–607PubMedCrossRefGoogle Scholar
  65. 65.
    Royer L, Rios E (2009) Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol 587:3101–3111PubMedCrossRefGoogle Scholar
  66. 66.
    Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, Volpe P, Allen PD, Reggiani C, Protasi F (2007) Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J Physiol 583:767–784PubMedCrossRefGoogle Scholar
  67. 67.
    Pertille A, de Carvalho CL, Matsumura CY, Neto HS, Marques MJ (2010) Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy. Int J Exp Pathol 91:63–71PubMedCrossRefGoogle Scholar
  68. 68.
    Lestienne P, Bataille N, Lucas-Heron B (1995) Role of the mitochondrial DNA and calmitine in myopathies. Biochim Biophys Acta 1271:159–163PubMedGoogle Scholar
  69. 69.
    Rescher U, Gerke V (2004) Annexins -unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639PubMedCrossRefGoogle Scholar
  70. 70.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371PubMedGoogle Scholar
  71. 71.
    Moss SE, Morgan RO (2004) The annexins. Genome Biol 5:219PubMedCrossRefGoogle Scholar
  72. 72.
    Geisow MJ, Fritsche U, Hexham JM, Dash B, Johnson T (1986) A consensus amino-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 320:636–638PubMedCrossRefGoogle Scholar
  73. 73.
    Mishra S, Chander V, Banerjee P, Oh JG, Lifirsu E, Park WJ, Kim dH, Bandyopadhyay A (2011) Interaction of annexin A6 with alpha actinin in cardiomyocytes. BMC Cell Biol 12:7PubMedCrossRefGoogle Scholar
  74. 74.
    Solito E, Nuti S, Parente L (1994) Dexamethasone-induced translocation of lipocortin (annexin) 1 to the cell membrane of U-937 cells. Br J Pharmacol 112:347–348PubMedGoogle Scholar
  75. 75.
    Brownstein C, Falcone DJ, Jacovina A, Hajjar KA (2001) A mediator of cell surface-specific plasmin generation. Ann N Y Acad Sci 947:143–155PubMedCrossRefGoogle Scholar
  76. 76.
    Fatimathas L, Moss SE (2010) Annexins as disease modifiers. Histol Histopathol 25:527–532PubMedGoogle Scholar
  77. 77.
    Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665PubMedCrossRefGoogle Scholar
  78. 78.
    Rizo J, Sudhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882PubMedCrossRefGoogle Scholar
  79. 79.
    Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390PubMedCrossRefGoogle Scholar
  80. 80.
    Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298:E395–E402PubMedCrossRefGoogle Scholar
  81. 81.
    Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88:1341–1378PubMedCrossRefGoogle Scholar
  82. 82.
    Newton AC, Johnson JE (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376:155–172PubMedGoogle Scholar
  83. 83.
    Giorgione JR, Lin JH, McCammon JA, Newton AC (2006) Increased membrane affinity of the C1 domain of protein kinase Cdelta compensates for the lack of involvement of its C2 domain in membrane recruitment. J Biol Chem 281:1660–1669PubMedCrossRefGoogle Scholar
  84. 84.
    Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T (2007) Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol 133:793–808PubMedCrossRefGoogle Scholar
  85. 85.
    Perin MS, Fried VA, Mignery GA, Jahn R, Sudhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260–263PubMedCrossRefGoogle Scholar
  86. 86.
    Fernandez I, Arac D, Ubach J, Gerber SH, Shin O, Gao Y, Anderson RG, Sudhof TC, Rizo J (2001) Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32:1057–1069PubMedCrossRefGoogle Scholar
  87. 87.
    Craxton M (2004) Synaptotagmin gene content of the sequenced genomes. BMC Genomics 5:43PubMedCrossRefGoogle Scholar
  88. 88.
    Fernández-Chacón R, Konigstorfer A, Gerber SH, García J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49PubMedCrossRefGoogle Scholar
  89. 89.
    Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36:88–96PubMedCrossRefGoogle Scholar
  90. 90.
    Lee JC, Simonyi A, Sun AY, Sun GY (2011) Phospholipases A2 and neural membrane dynamics: implications for Alzheimer’s disease. J Neurochem 116:813–819PubMedCrossRefGoogle Scholar
  91. 91.
    Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium ­signaling. Physiol Rev 81:239–297PubMedGoogle Scholar
  92. 92.
    Hofer AM (2005) Another dimension to calcium signaling: a look at extracellular calcium. J Cell Sci 118:855–862PubMedCrossRefGoogle Scholar
  93. 93.
    Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3:163–165PubMedCrossRefGoogle Scholar
  94. 94.
    Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–827PubMedCrossRefGoogle Scholar
  95. 95.
    Busch E, Hohenester E, Timpl R, Paulsson M, Maurer P (2000) Calcium affinity, cooperativity, and domain interactions of extracellular EF-hands present in BM-40. J Biol Chem 275:25508–25515PubMedCrossRefGoogle Scholar
  96. 96.
    Podhajcer OL, Benedetti L, Girotti MR, Prada F, Salvatierra E, Llera AS (2008) The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 27:523–537PubMedCrossRefGoogle Scholar
  97. 97.
    Maurer P, Hohenester E, Engel J (1996) Extracellular calcium-binding proteins. Curr Opin Cell Biol 8:609–617PubMedCrossRefGoogle Scholar
  98. 98.
    Krebs J, Heizmann CW (2007) Calcium-binding proteins and the EF-hand principle. In: Krebs J, Michalak M (eds) Calcium: a matter of life or death. Elsevier, Amsterdam, pp 51–93CrossRefGoogle Scholar
  99. 99.
    Stenflo J, Stenberg Y, Muranyi A (2000) Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochim Biophys Acta 1477:51–63PubMedCrossRefGoogle Scholar
  100. 100.
    Handford PA (2000) Fibrillin-1, a calcium binding protein of extracellular matrix. Biochim Biophys Acta 1498:84–90PubMedCrossRefGoogle Scholar
  101. 101.
    Pena F, Jansens A, van Zadelhoff G, Braakman I (2010) Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. J Biol Chem 285:8656–8664PubMedCrossRefGoogle Scholar
  102. 102.
    Cranenburg EC, Schurgers LJ, Vermeer C (2007) Vitamin K: the coagulation vitamin that became omnipotent. Thromb Haemost 98:120–125PubMedGoogle Scholar
  103. 103.
    Ohkubo YZ, Tajkhorshid E (2008) Distinct structural and adhesive roles of Ca2+ in membrane binding of blood coagulation factors. Structure 16:72–81PubMedCrossRefGoogle Scholar
  104. 104.
    Hansson K, Stenflo J (2005) Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 3:2633–2648PubMedCrossRefGoogle Scholar
  105. 105.
    Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214PubMedCrossRefGoogle Scholar
  106. 106.
    Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313PubMedCrossRefGoogle Scholar
  107. 107.
    Oroz J, Valbuena A, Vera AM, Mendieta J, Gomez-Puertas P, Carrion-Vazquez M (2011) Nanomechanics of the cadherin ectodomain: “canalization” by Ca2+ binding results in a new mechanical element. J Biol Chem 286:9405–9418PubMedCrossRefGoogle Scholar
  108. 108.
    Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7:481–488PubMedCrossRefGoogle Scholar
  109. 109.
    Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217PubMedCrossRefGoogle Scholar
  110. 110.
    Silve C, Petrel C, Leroy C, Bruel H, Mallet E, Rognan D, Ruat M (2005) Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J Biol Chem 280:37917–37923PubMedCrossRefGoogle Scholar
  111. 111.
    Steddon SJ, Cunningham J (2005) Calcimimetics and calcilytics -fooling the calcium receptor. Lancet 365:2237–2239PubMedCrossRefGoogle Scholar
  112. 112.
    Jiang Y, Huang Y, Wong HC, Zhou Y, Wang X, Yang J, Hall RA, Brown EM, Yang JJ (2010) Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1{alpha} (mGluR1{alpha}) that controls receptor activation. J Biol Chem 285:33463–33474PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Departamento de Farmacoloxía. Facultade de FarmaciaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations