Skip to main content

NAADP on Target

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent intracellular Ca2+-mobilising messenger. Much evidence indicates that NAADP targets novel Ca2+ channels located on acidic organelles but the identity of these channels has remained obscure. Recent studies have converged on a novel class of ion channels, the two-pore channels (TPCs) as likely molecular targets. The location of these channels to the endo-lysosomal system and their sensitivity to NAADP match closely those of endogenous NAADP-sensitive channels in both mammalian cells and sea urchin eggs, where the effects of NAADP were discovered. Moreover, the functional coupling of TPCs to archetypal endoplasmic reticulum (ER) Ca2+ channels is also matched. Biophysical analysis in conjunction with site-directed mutagenesis demonstrates that TPCs are pore-forming subunits of NAADP-gated ion channels. TPCs have a unique two-repeat structure, are regulated by N-linked glycosylation and harbor an endo-lysosomal targeting motif in their N-terminus. Knockdown studies have shown TPCs to regulate smooth muscle contraction, differentiation and endothelial cell activation consistent with previous studies implicating NAADP in these processes. Thus multiple lines of evidence indicate that TPCs are the likely long sought targets for NAADP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  2. Patel S, Churchill GC, Galione A (2001) Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci 26:482–489

    Article  PubMed  CAS  Google Scholar 

  3. Lee HC (1997) Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev 77:1133–1164

    PubMed  CAS  Google Scholar 

  4. Guse AH, Lee HC (2008) NAADP: a universal Ca2+ trigger. Sci Signal 1:re10

    Article  PubMed  CAS  Google Scholar 

  5. Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264

    Article  PubMed  CAS  Google Scholar 

  6. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  7. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    Article  PubMed  CAS  Google Scholar 

  8. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  PubMed  CAS  Google Scholar 

  9. Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rotzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflugers Arch 458:891–899

    Article  PubMed  CAS  Google Scholar 

  10. Clapper DL, Lee HC (1985) Inositol trisphosphate induces calcium release from nonmitochondrial stores in sea urchin egg homogenates. J Biol Chem 260:13947–13954

    PubMed  CAS  Google Scholar 

  11. Clapper DL, Walseth TF, Dargie PJ, Lee HC (1987) Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262:9561–9568

    PubMed  CAS  Google Scholar 

  12. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL (1989) Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem 264:1608–1615

    PubMed  CAS  Google Scholar 

  13. Lee HC, Aarhus R (1991) ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul 2:203–209

    PubMed  CAS  Google Scholar 

  14. Churamani D, Boulware MJ, Geach TJ, Martin AC, Moy GW, Su YH, Vacquier VD, Marchant JS, Dale L, Patel S (2007) Molecular characterization of a novel intracellular ADP-ribosyl cyclase. PLoS One 2:e797

    Article  PubMed  CAS  Google Scholar 

  15. Davis LC, Morgan AJ, Ruas M, Wong JL, Graeff RM, Poustka AJ, Lee HC, Wessel GM, Parrington J, Galione A (2008) Ca2+ signaling occurs via second messenger release from intraorganelle synthesis sites. Curr Biol 18:1612–1618

    Article  PubMed  CAS  Google Scholar 

  16. Ramakrishnan L, Muller-Steffner H, Bosc C, Vacquier VD, Schuber F, Moutin MJ, Dale L, Patel S (2010) A single residue in a novel ADP-ribosyl cyclase controls production of the calcium-mobilizing messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 285:19900–19909

    Article  PubMed  CAS  Google Scholar 

  17. Lee HC, Aarhus R (1995) A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270:2152–2157

    Article  PubMed  CAS  Google Scholar 

  18. Chini EN, Dousa TP (1996) Nicotinate-adenine dinucleotide phosphate-induced Ca2+-release does not behave as a Ca2+-induced Ca2+-release system. Biochem J 316(Pt 3):709–711

    PubMed  CAS  Google Scholar 

  19. Aarhus R, Dickey DM, Graeff RM, Gee KR, Walseth TF, Lee HC (1996) Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem 271:8513–8516

    Article  PubMed  CAS  Google Scholar 

  20. Genazzani AA, Empson RM, Galione A (1996) Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem 271:11599–11602

    Article  PubMed  CAS  Google Scholar 

  21. Lee HC, Aarhus R (2000) Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci 113(Pt 24):4413–4420

    PubMed  CAS  Google Scholar 

  22. Genazzani AA, Galione A (1996) Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J 315(Pt 3):721–725

    PubMed  CAS  Google Scholar 

  23. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  PubMed  CAS  Google Scholar 

  24. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708

    Article  PubMed  CAS  Google Scholar 

  25. Jadot M, Colmant C, Wattiaux-De CS, Wattiaux R (1984) Intralysosomal hydrolysis of glycyl-L-phenylalanine 2-naphthylamide. Biochem J 219:965–970

    PubMed  CAS  Google Scholar 

  26. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  PubMed  CAS  Google Scholar 

  27. Docampo R, Moreno SN (1999) Acidocalcisome: A novel Ca2+ storage compartment in trypanosomatids and apicomplexan parasites. Parasitol Today 15:443–448

    Article  PubMed  CAS  Google Scholar 

  28. Churchill GC, Galione A (2000) Spatial control of Ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J Biol Chem 275:38687–38692

    Article  PubMed  CAS  Google Scholar 

  29. Churchill GC, Galione A (2001) NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J 20:2666–2671

    Article  PubMed  CAS  Google Scholar 

  30. Patel S, Churchill GC, Galione A (2000) Unique kinetics of nicotinic acid-adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochem J 352(Pt 3):725–729

    Article  PubMed  CAS  Google Scholar 

  31. Billington RA, Genazzani AA (2000) Characterization of NAADP(+) binding in sea urchin eggs. Biochem Biophys Res Commun 276:112–116

    Article  PubMed  CAS  Google Scholar 

  32. Patel S, Churchill GC, Sharp T, Galione A (2000) Widespread distribution of binding sites for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate, in the brain. J Biol Chem 275:36495–36497

    Article  PubMed  CAS  Google Scholar 

  33. Lee HC, Aarhus R (1997) Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J Biol Chem 272:20378–20383

    Article  PubMed  CAS  Google Scholar 

  34. Churamani D, Dickinson GD, Patel S (2005) NAADP binding to its target protein in sea urchin eggs requires phospholipids. Biochem J 386:497–504

    Article  PubMed  CAS  Google Scholar 

  35. Dickinson GD, Patel S (2003) Modulation of NAADP (nicotinic acid-adenine dinucleotide phosphate) receptors by K+ ions: evidence for multiple NAADP receptor conformations. Biochem J 375:805–812

    Article  PubMed  CAS  Google Scholar 

  36. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–226

    Article  PubMed  CAS  Google Scholar 

  37. Rosen D, Lewis AM, Mizote A, Thomas JM, Aley PK, Vasudevan SR, Parkesh R, Galione A, Izumi M, Ganesan A, Churchill GC (2009) Analogues of the NAADP antagonist NED-19 indicate two binding sites on the NAADP receptor. J Biol Chem 284(50):34930–34934

    Article  PubMed  CAS  Google Scholar 

  38. Berridge G, Dickinson G, Parrington J, Galione A, Patel S (2002) Solubilization of receptors for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate. J Biol Chem 277:43717–43723

    Article  PubMed  CAS  Google Scholar 

  39. Churamani D, Dickinson GD, Ziegler M, Patel S (2006) Time sensing by NAADP receptors. Biochem J 397:313–320

    Article  PubMed  CAS  Google Scholar 

  40. Santella L, Kyozuka K, Genazzani AA, De RL, Carafoli E (2000) Nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release. Interactions among distinct Ca2+ mobilizing mechanisms in starfish oocytes. J Biol Chem 275:8301–8306

    Article  PubMed  CAS  Google Scholar 

  41. Albrieux M, Lee HC, Villaz M (1998) Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes. J Biol Chem 273:14566–14574

    Article  PubMed  CAS  Google Scholar 

  42. Chameau P, Van de Vrede Y, Fossier P, Baux G (2001) Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch 443:289–296

    Article  PubMed  CAS  Google Scholar 

  43. Brailoiu E, Miyamoto MD, Dun NJ (2001) Nicotinic acid adenine dinucleotide phosphate enhances quantal neurosecretion at the frog neuromuscular junction: possible action on synaptic vesicles in the releasable pool. Mol Pharmacol 60:718–724

    PubMed  CAS  Google Scholar 

  44. Berg I, Potter BV, Mayr GW, Guse AH (2000) Nicotinic acid adenine dinucleotide phosphate (NAADP(+)) is an essential regulator of T-lymphocyte Ca2+-signaling. J Cell Biol 150:581–588

    Article  PubMed  CAS  Google Scholar 

  45. Cancela JM, Churchill GC, Galione A (1999) Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 398:74–76

    Article  PubMed  CAS  Google Scholar 

  46. Churamani D, Carrey EA, Dickinson GD, Patel S (2004) Determination of cellular nicotinic acid-adenine dinucleotide phosphate (NAADP) levels. Biochem J 380:449–454

    Article  PubMed  CAS  Google Scholar 

  47. Lewis AM, Masgrau R, Vasudevan SR, Yamasaki M, O’Neill JS, Garnham C, James K, Macdonald A, Ziegler M, Galione A, Churchill GC (2007) Refinement of a radioreceptor binding assay for nicotinic acid adenine dinucleotide phosphate. Anal Biochem 371:26–36

    Article  PubMed  CAS  Google Scholar 

  48. Galione A, Morgan AJ, Arredouani A, Davis LC, Rietdorf K, Ruas M, Parrington J (2010) NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochem Soc Trans 38:1424–1431

    Article  PubMed  CAS  Google Scholar 

  49. Moccia F, Lim D, Kyozuka K, Santella L (2004) NAADP triggers the fertilization potential in starfish oocytes. Cell Calcium 36:515–524

    Article  PubMed  CAS  Google Scholar 

  50. Churchill GC, O’Neill JS, Masgrau R, Patel S, Thomas JM, Genazzani AA, Galione A (2003) Sperm deliver a new second messenger: NAADP. Curr Biol 13:125–128

    Article  PubMed  CAS  Google Scholar 

  51. Morgan AJ, Galione A (2007) Fertilization and nicotinic acid adenine dinucleotide phosphate induce pH changes in acidic Ca2+ stores in sea urchin eggs. J Biol Chem 282: 37730–37737

    Article  PubMed  CAS  Google Scholar 

  52. Hwang GS, Jian CY, Chen TJ, Chen ST, Wang SW (2009) Effects of hypoxia on testosterone release in rat Leydig cells. Am J Physiol Endocrinol Metab 297:1039–1045

    Google Scholar 

  53. Aley PK, Noh HJ, Gao X, Tica AA, Brailoiu E, Churchill GC (2010) A functional role for nicotinic acid adenine dinucleotide phosphate in oxytocin-mediated contraction of uterine smooth muscle from rat. J Pharmacol Exp Ther 333:726–735

    Article  PubMed  CAS  Google Scholar 

  54. Brailoiu E, Patel S, Dun NJ (2003) Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca2+ stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP). Biochem J 373:313–318

    Article  PubMed  CAS  Google Scholar 

  55. Brailoiu E, Hoard JL, Filipeanu CM, Brailoiu GC, Dun SL, Patel S, Dun NJ (2005) Nicotinic acid adenine dinucleotide phosphate potentiates neurite outgrowth. J Biol Chem 280: 5646–5650

    Article  PubMed  CAS  Google Scholar 

  56. Brailoiu E, Churamani D, Pandey V, Brailoiu GC, Tuluc F, Patel S, Dun NJ (2006) Messenger-specific role for nicotinic acid adenine dinucleotide phosphate in neuronal differentiation. J Biol Chem 281:15923–15928

    Article  PubMed  CAS  Google Scholar 

  57. Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C, Han SW, Stilhano RS, Ureshino RP, Bloor-Young D, Churchill G, Piacentini M, Patel S, Smaili SS (2011) Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 286(32):27875–27881

    Article  PubMed  CAS  Google Scholar 

  58. Brailoiu GC, Brailoiu E, Parkesh R, Galione A, Churchill GC, Patel S, Dun NJ (2009) NAADP-mediated channel ‘chatter’ in neurons of the rat medulla oblongata. Biochem J 419:91–97, 2

    Article  PubMed  CAS  Google Scholar 

  59. Mushtaq M, Nam TS, Kim UH (2011) Critical role for CD38-mediated Ca2+ signaling in thrombin-induced procoagulant activity of mouse platelets and hemostasis. J Biol Chem 286:12952–12958

    Article  PubMed  CAS  Google Scholar 

  60. Macgregor A, Yamasaki M, Rakovic S, Sanders L, Parkesh R, Churchill GC, Galione A, Terrar DA (2007) NAADP controls cross-talk between distinct Ca2+ stores in the heart. J Biol Chem 282:15302–15311

    Article  PubMed  CAS  Google Scholar 

  61. Zhang F, Zhang G, Zhang AY, Koeberl MJ, Wallander E, Li PL (2006) Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes. Am J Physiol Heart Circ Physiol 291:H274–H282

    Article  PubMed  CAS  Google Scholar 

  62. Boittin FX, Galione A, Evans AM (2002) Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ Res 91:1168–1175

    Article  PubMed  CAS  Google Scholar 

  63. Brailoiu GC, Gurzu B, Gao X, Parkesh R, Aley PK, Trifa DI, Galione A, Dun NJ, Madesh M, Patel S, Churchill GC, Brailoiu E (2010) Acidic NAADP-sensitive calcium stores in the endothelium: agonist-specific recruitment and role in regulating blood pressure. J Biol Chem 285:37133–37137

    Article  PubMed  CAS  Google Scholar 

  64. Esposito B, Gambara G, Lewis AM, Palombi F, D’Alessio A, Taylor LX, Genazzani AA, Ziparo E, Galione A, Churchill GC, Filippini A (2011) NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. Blood 117:4968–4977

    Article  PubMed  CAS  Google Scholar 

  65. Dammermann W, Zhang B, Nebel M, Cordiglieri C, Odoardi F, Kirchberger T, Kawakami N, Dowden J, Schmid F, Dornmair K, Hohenegger M, Flugel A, Guse AH, Potter BV (2009) NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proc Natl Acad Sci USA 106:10678–10683

    PubMed  CAS  Google Scholar 

  66. Cordiglieri C, Odoardi F, Zhang B, Nebel M, Kawakami N, Klinkert WE, Lodygin D, Luhder F, Breunig E, Schild D, Ulaganathan VK, Dornmair K, Dammermann W, Potter BV, Guse AH, Flugel A (2010) Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system. Brain 133:1930–1943

    Article  PubMed  Google Scholar 

  67. Rah SY, Mushtaq M, Nam TS, Kim SH, Kim UH (2010) Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. J Biol Chem 285:21877–21887

    Article  PubMed  CAS  Google Scholar 

  68. Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878

    Article  PubMed  CAS  Google Scholar 

  69. Alejandro EU, Kalynyak TB, Taghizadeh F, Gwiazda KS, Rawstron EK, Jacob KJ, Johnson JD (2010) Acute insulin signaling in pancreatic beta-cells is mediated by multiple Raf-1 dependent pathways. Endocrinology 151:502–512

    Article  PubMed  CAS  Google Scholar 

  70. Durlu-Kandilci NT, Ruas M, Chuang KT, Brading A, Parrington J, Galione A (2010) TPC2 proteins mediate nicotinic acid adenine dinucleotide phosphate (NAADP)- and agonist-evoked contractions of smooth muscle. J Biol Chem 285:24925–24932

    Article  CAS  Google Scholar 

  71. Aley PK, Mikolajczyk AM, Munz B, Churchill GC, Galione A, Berger F (2010) Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels. Proc Natl Acad Sci USA 107:19927–19932

    Article  PubMed  CAS  Google Scholar 

  72. Zhang F, Xu M, Han WQ, Li PL (2011) Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1−/− cells. Am J Physiol Cell Physiol 301(2):C421–C430

    Article  PubMed  CAS  Google Scholar 

  73. Mojzisova A, Krizanova O, Zacikova L, Kominkova V, Ondrias K (2001) Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Pflugers Arch 441:674–677

    Article  PubMed  CAS  Google Scholar 

  74. Hohenegger M, Suko J, Gscheidlinger R, Drobny H, Zidar A (2002) Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor. Biochem J 367:423–431

    Article  PubMed  CAS  Google Scholar 

  75. Gerasimenko JV, Maruyama Y, Yano K, Dolman NJ, Tepikin AV, Petersen OH, Gerasimenko OV (2003) NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 163:271–282

    Article  PubMed  CAS  Google Scholar 

  76. Steen M, Kirchberger T, Guse AH (2007) NAADP mobilizes calcium from the endoplasmic reticular Ca2+ store in T-lymphocytes. J Biol Chem 282:18864–18871

    Article  PubMed  CAS  Google Scholar 

  77. Copello JA, Qi Y, Jeyakumar LH, Ogunbunmi E, Fleischer S (2001) Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium 30:269–284

    Article  PubMed  CAS  Google Scholar 

  78. Patel S, Marchant JS, Brailoiu E (2010) Two-pore channels: regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium 47:480–490

    Article  PubMed  CAS  Google Scholar 

  79. Kinnear NP, Wyatt CN, Clark JH, Calcraft PJ, Fleischer S, Jeyakumar LH, Nixon GF, Evans AM (2008) Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium 44:190–201

    Article  PubMed  CAS  Google Scholar 

  80. Patel S, Brailoiu E (2011) Triggering of Ca2+ signals by NAADP-gated two-pore channels. A role for membrane contact sites? Biochem Soc Trans 40:153–157

    Google Scholar 

  81. Zhang F, Jin S, Yi F, Li PL (2009) TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J Cell Mol Med 13(9B):3174–3185

    Article  PubMed  Google Scholar 

  82. Zhang F, Li PL (2007) Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca2+ release channel from liver lysosomes of rats. J Biol Chem 282:25259–25269

    Article  PubMed  CAS  Google Scholar 

  83. Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S (2011) Transient receptor potential mucolipin 1 (TRPML1) and Two-pore channels Are functionally independent organellar Ion channels. J Biol Chem 286:22934–22942

    Article  PubMed  CAS  Google Scholar 

  84. Lange I, Penner R, Fleig A, Beck A (2008) Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 44:604–615

    Article  PubMed  CAS  Google Scholar 

  85. Toth B, Csanady L (2010) Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem 285:30091–30102

    Article  PubMed  CAS  Google Scholar 

  86. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2:ra23

    Article  PubMed  Google Scholar 

  87. Ishibashi K, Suzuki M, Imai M (2000) Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun 270:370–376

    Article  PubMed  CAS  Google Scholar 

  88. Furuichi T, Cunningham KW, Muto S (2001) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905

    Article  PubMed  CAS  Google Scholar 

  89. Hashimoto K, Saito M, Matsuoka H, Iida K, Iida H (2004) Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol 45:496–500

    Article  PubMed  CAS  Google Scholar 

  90. Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  PubMed  CAS  Google Scholar 

  91. Peiter E (2011) The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 50(2):120–128

    Article  PubMed  CAS  Google Scholar 

  92. Pottosin II, Schonknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    Article  PubMed  CAS  Google Scholar 

  93. Patel S, Docampo R (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20:277–286

    Article  PubMed  CAS  Google Scholar 

  94. Patel S, Muallem S (2011) Acidic Ca2+ stores come to the fore. Cell Calcium 50(2):109–112

    Article  PubMed  CAS  Google Scholar 

  95. Brailoiu E, Hooper R, Cai X, Brailoiu GC, Keebler MV, Dun NJ, Marchant JS, Patel S (2010) An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J Biol Chem 285:2897–2901

    Article  PubMed  CAS  Google Scholar 

  96. Cai X, Patel S (2010) Degeneration of an intracellular ion channel in the primate lineage by relaxation of selective constraints. Mol Biol Evol 27:2352–2359

    Article  PubMed  CAS  Google Scholar 

  97. Zhu MX, Ma J, Parrington J, Galione A, Evans AM (2010) TPCs: endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 584:1966–1974

    Article  PubMed  CAS  Google Scholar 

  98. Ogunbayo OA, Zhu Y, Rossi D, Sorrentino V, Ma J, Zhu MX, Evans AM (2011) Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels. J Biol Chem 286:9136–9140

    Article  PubMed  CAS  Google Scholar 

  99. Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol 20(8):703–709

    Article  PubMed  CAS  Google Scholar 

  100. Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallbook F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Rottinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R (2006) The genome of the sea urchin strongylocentrotus purpuratus. Science 314:941–952

    Article  PubMed  Google Scholar 

  101. Galione A, Patel S, Churchill GC (2000) NAADP-induced calcium release in sea urchin eggs. Biol Cell 92:197–204

    Article  PubMed  CAS  Google Scholar 

  102. Brailoiu E, Rahman T, Churamani D, Prole DL, Brailoiu GC, Hooper R, Taylor CW, Patel S (2010) An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J Biol Chem 285:38511–38516

    Article  PubMed  CAS  Google Scholar 

  103. Schieder M, Rotzer K, Bruggemann A, Biel M, Wahl-Schott C (2010) Planar patch clamp approach to characterize ionic currents from intact lysosomes. Sci Signal 3:l3

    Article  CAS  Google Scholar 

  104. Schieder M, Rotzer K, Bruggemann A, Biel M, Wahl-Schott CA (2010) Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J Biol Chem 285:21219–21222

    Article  PubMed  CAS  Google Scholar 

  105. Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R (2010) TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285:35039–35046

    Article  PubMed  CAS  Google Scholar 

  106. Hooper R, Churamani D, Brailoiu E, Taylor CW, Patel S (2011) Membrane topology of NAADP-sensitive two-pore channels and their regulation by N-linked glycosylation. J Biol Chem 286:9141–9149

    Article  PubMed  CAS  Google Scholar 

  107. Lorenz H, Hailey DW, Wunder C, Lippincott-Schwartz J (2006) The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat Protoc 1:276–279

    Article  PubMed  CAS  Google Scholar 

  108. Noma K, Kimura K, Minatohara K, Nakashima H, Nagao Y, Mizoguchi A, Fujiyoshi Y (2009) Triple N-glycosylation in the long S5-P loop regulates the activation and trafficking of the Kv12.2 potassium channel. J Biol Chem 284:33139–33150

    Article  PubMed  CAS  Google Scholar 

  109. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  PubMed  CAS  Google Scholar 

  110. Patel S, Ramakrishnan L, Rahman T, Hamdoun A, Marchant JS, Taylor CW, Brailoiu E (2011) The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: role for the two-pore channels. Cell Calcium 50(2):157–167

    Article  PubMed  CAS  Google Scholar 

  111. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Jakobsdottir M, Steinberg S, Gudjonsson SA, Palsson A, Thorleifsson G, Palsson S, Sigurgeirsson B, Thorisdottir K, Ragnarsson R, Benediktsdottir KR, Aben KK, Vermeulen SH, Goldstein AM, Tucker MA, Kiemeney LA, Olafsson JH, Gulcher J, Kong A, Thorsteinsdottir U, Stefansson K (2008) Two newly identified genetic determinants of pigmentation in Europeans. Nat Genet 40:835–837

    Article  PubMed  CAS  Google Scholar 

  112. Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE, Sinha S, Moore JL, Jagadeeswaran P, Zhao W, Ning G, Makalowska I, McKeigue PM, O’donnell D, Kittles R, Parra EJ, Mangini NJ, Grunwald DJ, Shriver MD, Canfield VA, Cheng KC (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786

    Article  PubMed  CAS  Google Scholar 

  113. Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35:1088–1091

    Article  PubMed  CAS  Google Scholar 

  114. Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–244

    Article  PubMed  CAS  Google Scholar 

  115. Richards MW, Butcher AJ, Dolphin AC (2004) Ca2+ channel beta-subunits: structural insights AID our understanding. Trends Pharmacol Sci 25:626–632

    Article  PubMed  CAS  Google Scholar 

  116. Lloyd-Evans E, Waller-Evans H, Peterneva K, Platt FM (2010) Endolysosomal calcium regulation and disease. Biochem Soc Trans 38:1458–1464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Chi Li and Taufiq Rahman for useful discussion and the BBSRC for supporting their research (BB/G013721/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hooper, R., Patel, S. (2012). NAADP on Target. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_14

Download citation

Publish with us

Policies and ethics