Skip to main content

Inositol 1,4,5-Trisphosphate and Its Receptors

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Activation of cells by many extracellular agonists leads to the production of inositol 1,4,5-trisphosphate (IP3). IP3 is a global messenger that easily diffuses in the cytosol. Its receptor (IP3R) is a Ca2+-release channel located on intracellular membranes, especially the endoplasmic reticulum (ER). The IP3R has an affinity for IP3 in the low nanomolar range. A prime regulator of the IP3R is the Ca2+ ion itself. Cytosolic Ca2+ is considered as a co-agonist of the IP3R, as it strongly increases IP3R activity at concentrations up to about 300 nM. In contrast, at higher concentrations, cytosolic Ca2+ inhibits the IP3R. Also the luminal Ca2+ sensitizes the IP3R. In higher organisms three genes encode for an IP3R and additional diversity exists as a result of alternative splicing mechanisms and the formation of homo- and heterotetramers. The various IP3R isoforms have a similar structure and a similar function, but due to differences in their affinity for IP3, their variable sensitivity to regulatory parameters, their differential interaction with associated proteins, and the variation in their subcellular localization, they participate differently in the formation of intracellular Ca2+ signals and this affects therefore the physiological consequences of these signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203:967–977

    PubMed  CAS  Google Scholar 

  2. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  CAS  Google Scholar 

  3. Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482

    PubMed  CAS  Google Scholar 

  4. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  6. Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36:88–96

    Article  PubMed  CAS  Google Scholar 

  7. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815

    Article  PubMed  CAS  Google Scholar 

  8. Erneux C, Takazawa K (1991) Intracellular control of inositol phosphates by their metabolizing enzymes. Trends Pharmacol Sci 12:174–176

    Article  PubMed  CAS  Google Scholar 

  9. De Smedt F, Missiaen L, Parys JB, Vanweyenberg V, De Smedt H, Erneux C (1997) Isoprenylated human brain type I inositol 1,4,5-trisphosphate 5-phosphatase controls Ca2+ oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem 272:17367–17375

    Article  PubMed  Google Scholar 

  10. Prentki M, Wollheim CB, Lew PD (1984) Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-triphosphate. J Biol Chem 259:13777–13782

    PubMed  CAS  Google Scholar 

  11. Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309:63–66

    Article  PubMed  CAS  Google Scholar 

  12. Oron Y, Dascal N, Nadler E, Lupu M (1985) Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature 313:141–143

    Article  PubMed  CAS  Google Scholar 

  13. O’Rourke FA, Halenda SP, Zavoico GB, Feinstein MB (1985) Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets. J Biol Chem 260:956–962

    PubMed  Google Scholar 

  14. Prentki M, Corkey BE, Matschinsky FM (1985) Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line. J Biol Chem 260:9185–9190

    PubMed  CAS  Google Scholar 

  15. Thévenod F, Streb H, Ullrich KJ, Schulz I (1986) Inositol 1,4,5-trisphosphate releases Ca2+ from a nonmitochondrial store site in permeabilized rat cortical kidney cells. Kidney Int 29:695–702

    Article  PubMed  Google Scholar 

  16. Parys JB, De Smedt H, Borghgraef R (1986) Calcium transport systems in the LLC-PK1 renal epithelial established cell line. Biochim Biophys Acta 888:70–81

    Article  PubMed  CAS  Google Scholar 

  17. Spät A, Bradford PG, McKinney JS, Rubin RP, Putney JW Jr (1986) A saturable receptor for 32P-inositol-1,4,5-triphosphate in hepatocytes and neutrophils. Nature 319:514–516

    Article  PubMed  Google Scholar 

  18. Guillemette G, Balla T, Baukal AJ, Catt KJ (1987) Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the anterior pituitary gland. Proc Natl Acad Sci USA 84:8195–8199

    Article  PubMed  CAS  Google Scholar 

  19. Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem 262:12132–12136

    PubMed  CAS  Google Scholar 

  20. Supattapone S, Worley PF, Baraban JM, Snyder SH (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263:1530–1534

    PubMed  CAS  Google Scholar 

  21. Chadwick CC, Saito A, Fleischer S (1990) Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sci USA 87:2132–2136

    Article  PubMed  CAS  Google Scholar 

  22. Mourey RJ, Verma A, Supattapone S, Snyder SH (1990) Purification and characterization of the inositol 1,4,5-trisphosphate receptor protein from rat vas deferens. Biochem J 272:383–389

    PubMed  CAS  Google Scholar 

  23. Parys JB, Sernett SW, DeLisle S, Snyder PM, Welsh MJ, Campbell KP (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 267:18776–18782

    PubMed  CAS  Google Scholar 

  24. Mignery GA, Südhof TC, Takei K, De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Article  PubMed  CAS  Google Scholar 

  25. Guillemette G, Favreau I, Boulay G, Potier M (1990) Solubilization and partial characterization of inositol 1,4,5-trisphosphate receptor of bovine adrenal cortex reveal similarities with the receptor of rat cerebellum. Mol Pharmacol 38:841–847

    PubMed  CAS  Google Scholar 

  26. Mignery GA, Südhof TC (1990) The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J 9:3893–3898

    PubMed  CAS  Google Scholar 

  27. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, Mikoshiba K (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266:1109–1116

    PubMed  CAS  Google Scholar 

  28. Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH (1989) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470

    Article  PubMed  CAS  Google Scholar 

  29. Maeda N, Niinobe M, Nakahira K, Mikoshiba K (1988) Purification and characterization of P400 protein, a glycoprotein characteristic of Purkinje cell, from mouse cerebellum. J Neurochem 51:1724–1730

    Article  PubMed  CAS  Google Scholar 

  30. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  PubMed  CAS  Google Scholar 

  31. Ferris CD, Huganir RL, Supattapone S, Snyder SH (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342:87–89

    Article  PubMed  CAS  Google Scholar 

  32. Miyawaki A, Furuichi T, Maeda N, Mikoshiba K (1990) Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron 5:11–18

    Article  PubMed  CAS  Google Scholar 

  33. Ehrlich BE, Watras J (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336:583–586

    Article  PubMed  CAS  Google Scholar 

  34. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  35. Mayrleitner M, Chadwick CC, Timerman AP, Fleischer S, Schindler H (1991) Purified IP3 receptor from smooth muscle forms an IP3 gated and heparin sensitive Ca2+ channel in planar bilayers. Cell Calcium 12:505–514

    Article  PubMed  CAS  Google Scholar 

  36. Mak DO, Foskett JK (1994) Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. J Biol Chem 269:29375–29378

    PubMed  CAS  Google Scholar 

  37. Mak DO, Foskett JK (1997) Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus. J Gen Physiol 109:571–587

    Article  PubMed  CAS  Google Scholar 

  38. Bezprozvanny I, Ehrlich BE (1994) Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol 104:821–856

    Article  PubMed  CAS  Google Scholar 

  39. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  40. Vermassen E, Parys JB, Mauger JP (2004) Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 96:3–17

    Article  PubMed  CAS  Google Scholar 

  41. Taylor CW, Taufiq UR, Pantazaka E (2009) Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. Chaos 19:037102

    Article  PubMed  CAS  Google Scholar 

  42. Mignery GA, Newton CL, Archer BTd, Südhof TC (1990) Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 265:12679–12685

    PubMed  CAS  Google Scholar 

  43. Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264

    Article  PubMed  CAS  Google Scholar 

  44. Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    Article  PubMed  CAS  Google Scholar 

  45. Sudhof TC, Newton CL, Archer BT 3rd, Ushkaryov YA, Mignery GA (1991) Structure of a novel InsP3 receptor. EMBO J 10:3199–3206

    PubMed  CAS  Google Scholar 

  46. Blondel O, Takeda J, Janssen H, Seino S, Bell GI (1993) Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem 268:11356–11363

    PubMed  CAS  Google Scholar 

  47. Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K (1991) The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci USA 88:6244–6248

    Article  PubMed  CAS  Google Scholar 

  48. Danoff SK, Ferris CD, Donath C, Fischer GA, Munemitsu S, Ullrich A, Snyder SH, Ross CA (1991) Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc Natl Acad Sci USA 88:2951–2955

    Article  PubMed  CAS  Google Scholar 

  49. Nucifora FC Jr, Li SH, Danoff S, Ullrich A, Ross CA (1995) Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res Mol Brain Res 32:291–296

    Article  PubMed  CAS  Google Scholar 

  50. Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, Furuichi T, Saruta T, Hasegawa M, Mikoshiba K (1995) Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 270:14700–14704

    Article  PubMed  CAS  Google Scholar 

  51. Joseph SK, Lin C, Pierson S, Thomas AP, Maranto AR (1995) Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells. J Biol Chem 270:23310–23316

    Article  PubMed  CAS  Google Scholar 

  52. Nucifora FC Jr, Sharp AH, Milgram SL, Ross CA (1996) Inositol 1,4,5-trisphosphate receptors in endocrine cells: localization and association in hetero- and homotetramers. Mol Biol Cell 7:949–960

    PubMed  CAS  Google Scholar 

  53. Joseph SK, Bokkala S, Boehning D, Zeigler S (2000) Factors determining the composition of inositol trisphosphate receptor hetero-oligomers expressed in COS cells. J Biol Chem 275:16084–16090

    Article  PubMed  CAS  Google Scholar 

  54. Newton CL, Mignery GA, Südhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619

    PubMed  CAS  Google Scholar 

  55. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308

    Article  PubMed  CAS  Google Scholar 

  56. Vanlingen S, Sipma H, De Smet P, Callewaert G, Missiaen L, De Smedt H, Parys JB (2000) Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J 346:275–280

    Article  PubMed  CAS  Google Scholar 

  57. Tu H, Wang Z, Nosyreva E, De Smedt H, Bezprozvanny I (2005) Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88:1046–1055

    Article  PubMed  CAS  Google Scholar 

  58. Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K (2007) Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem 282:12755–12764

    Article  PubMed  CAS  Google Scholar 

  59. Zhang S, Fritz N, Ibarra C, Uhlen P (2011) Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 36:1175–1185

    Article  PubMed  CAS  Google Scholar 

  60. De Smedt H, Missiaen L, Parys JB, Bootman MD, Mertens L, Van Den Bosch L, Casteels R (1994) Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem 269:21691–21698

    PubMed  Google Scholar 

  61. Wojcikiewicz RJ (1995) Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270:11678–11683

    Article  PubMed  CAS  Google Scholar 

  62. Rahman TU, Skupin A, Falcke M, Taylor CW (2009) Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. Nature 458:655–659

    Article  Google Scholar 

  63. Rahman T, Taylor CW (2009) Dynamic regulation of IP3 receptor clustering and activity by IP3. Channels (Austin) 3:226–232

    Article  CAS  Google Scholar 

  64. Parker I, Choi J, Yao Y (1996) Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20:105–121

    Article  PubMed  CAS  Google Scholar 

  65. Bootman MD, Berridge MJ, Lipp P (1997) Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91:367–373

    Article  PubMed  CAS  Google Scholar 

  66. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol (Lond) 499:290–306

    Google Scholar 

  67. Marchant JS, Parker I (2001) Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J 20:65–76

    Article  PubMed  CAS  Google Scholar 

  68. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  69. Diambra L, Marchant JS (2009) Localization and socialization: experimental insights into the functional architecture of IP3 receptors. Chaos 19:037103

    Article  PubMed  CAS  Google Scholar 

  70. Diambra L, Marchant JS (2011) Inositol (1,4,5)-trisphosphate receptor microarchitecture shapes Ca2+ puff kinetics. Biophys J 100:822–831

    Article  PubMed  CAS  Google Scholar 

  71. Conway SJ, Miller GJ (2007) Biology-enabling inositol phosphates, phosphatidylinositol phosphates and derivatives. Nat Prod Rep 24:687–707

    Article  PubMed  CAS  Google Scholar 

  72. DeLisle S, Radenberg T, Wintermantel MR, Tietz C, Parys JB, Pittet D, Welsh MJ, Mayr GW (1994) Second messenger specificity of the inositol trisphosphate receptor: reappraisal based on novel inositol phosphates. Am J Physiol 266:C429–C436

    PubMed  CAS  Google Scholar 

  73. Takahashi M, Kagasaki T, Hosoya T, Takahashi S (1993) Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 46:1643–1647

    Article  CAS  Google Scholar 

  74. Morris SA, Nerou EP, Riley AM, Potter BV, Taylor CW (2002) Determinants of adenophostin A binding to inositol trisphosphate receptors. Biochem J 367:113–120

    Article  PubMed  CAS  Google Scholar 

  75. Rossi AM, Sureshan KM, Riley AM, Potter VL, Taylor CW (2010) Selective determinants of inositol 1,4,5-trisphosphate and adenophostin A interactions with type 1 inositol 1,4,5-trisphosphate receptors. Br J Pharmacol 161:1070–1085

    Article  PubMed  CAS  Google Scholar 

  76. Swann K (1991) Thimerosal causes calcium oscillations and sensitizes calcium-induced calcium release in unfertilized hamster eggs. FEBS Lett 278:175–178

    Article  PubMed  CAS  Google Scholar 

  77. Bootman MD, Taylor CW, Berridge MJ (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem 267:25113–25119

    PubMed  CAS  Google Scholar 

  78. Missiaen L, Parys JB, Sienaert I, Maes K, Kunzelmann K, Takahashi M, Tanzawa K, De Smedt H (1998) Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 273:8983–8986

    Article  PubMed  CAS  Google Scholar 

  79. Parys JB, Missiaen L, De Smedt H, Droogmans G, Casteels R (1993) Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch 424:516–522

    Article  PubMed  CAS  Google Scholar 

  80. Bultynck G, Sienaert I, Parys JB, Callewaert G, De Smedt H, Boens N, Dehaen W, Missiaen L (2003) Pharmacology of inositol trisphosphate receptors. Pflugers Arch 445:629–642

    PubMed  CAS  Google Scholar 

  81. Hill TD, Berggren PO, Boynton AL (1987) Heparin inhibits inositol trisphosphate-induced calcium release from permeabilized rat liver cells. Biochem Biophys Res Commun 149:897–901

    Article  PubMed  CAS  Google Scholar 

  82. Ghosh TK, Eis PS, Mullaney JM, Ebert CL, Gill DL (1988) Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J Biol Chem 263:11075–11079

    PubMed  CAS  Google Scholar 

  83. Tones MA, Bootman MD, Higgins BF, Lane DA, Pay GF, Lindahl U (1989) The effect of heparin on the inositol 1,4,5-trisphosphate receptor in rat liver microsomes. Dependence on sulphate content and chain length. FEBS Lett 252:105–108

    Article  PubMed  CAS  Google Scholar 

  84. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505

    PubMed  CAS  Google Scholar 

  85. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150

    Article  PubMed  CAS  Google Scholar 

  86. Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, Fleig A, Penner R, Mikoshiba K (2010) Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins. Cell Calcium 47:1–10

    Article  PubMed  CAS  Google Scholar 

  87. Gafni J, Munsch JA, Lam TH, Catlin MC, Costa LG, Molinski TF, Pessah IN (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19:723–733

    Article  PubMed  CAS  Google Scholar 

  88. De Smet P, Parys JB, Callewaert G, Weidema AF, Hill E, De Smedt H, Erneux C, Sorrentino V, Missiaen L (1999) Xestospongin C is an equally potent inhibitor of the inositol 1,4,5- trisphosphate receptor and the endoplasmic-reticulum Ca2+ pumps. Cell Calcium 26:9–13

    Article  PubMed  Google Scholar 

  89. Jaimovich E, Mattei C, Liberona JL, Cárdenas C, Estrada M, Barbier J, Debitus C, Laurent D, Molgó J (2005) Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108–15) cells. FEBS Lett 579:2051–2057

    Article  PubMed  CAS  Google Scholar 

  90. Haak LL, Song LS, Molinski TF, Pessah IN, Cheng H, Russell JT (2001) Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci 21:3860–3870

    PubMed  CAS  Google Scholar 

  91. Vandeput F, Combettes L, Mills SJ, Backers K, Wohlkönig A, Parys JB, De Smedt H, Missiaen L, Dupont G, Potter BV, Erneux C (2007) Biphenyl 2,3’,4,5’,6-pentakisphosphate, a novel inositol polyphosphate surrogate, modulates Ca2+ responses in rat hepatocytes. FASEB J 21:1481–1491

    Article  PubMed  CAS  Google Scholar 

  92. Bosanac I, Michikawa T, Mikoshiba K, Ikura M (2004) Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta 1742:89–102

    Article  PubMed  CAS  Google Scholar 

  93. Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560

    Article  PubMed  CAS  Google Scholar 

  94. Yoshikawa F, Iwasaki H, Michikawa T, Furuichi T, Mikoshiba K (1999) Cooperative formation of the ligand-binding site of the inositol 1,4, 5-trisphosphate receptor by two separable domains. J Biol Chem 274:328–334

    Article  PubMed  CAS  Google Scholar 

  95. Boehning D, Joseph SK (2000) Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J 19:5450–5459

    Article  PubMed  CAS  Google Scholar 

  96. Bultynck G, Szlufcik K, Kasri NN, Assefa Z, Callewaert G, Missiaen L, Parys JB, De Smedt H (2004) Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381:87–96

    Article  PubMed  CAS  Google Scholar 

  97. Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K (2009) 80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity. J Biol Chem 284:372–380

    Article  PubMed  CAS  Google Scholar 

  98. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162

    Article  PubMed  CAS  Google Scholar 

  99. Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K, Matsuyama S, Herlitze S, Roderick HL, Bootman MD, Mignery GA, Parys JB, De Smedt H, Distelhorst CW (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31:255–265

    Article  PubMed  CAS  Google Scholar 

  100. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P, Distelhorst CW (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203

    Article  PubMed  CAS  Google Scholar 

  101. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 7:1021–1028

    Article  PubMed  CAS  Google Scholar 

  102. Monaco G, Decrock E, Akl H, Ponsaerts R, Vervliet T, Luyten T, De Maeyer M, Missiaen L, Distelhorst CW, De Smedt H, Parys JB, Leybaert L, Bultynck G (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death and Differentiation 19:295–309. doi:10.1038/cdd.2011.97

    Google Scholar 

  103. Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgó J, Szabadkai G, Lavandero S, Kroemer G (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–1017

    Article  PubMed  CAS  Google Scholar 

  104. Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T, Hattori M, Nakamura T, Mikoshiba K (2010) Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68:865–878

    Article  PubMed  CAS  Google Scholar 

  105. Yang J, McBride S, Mak DO, Vardi N, Palczewski K, Haeseleer F, Foskett JK (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc Natl Acad Sci USA 99:7711–7716

    Article  PubMed  CAS  Google Scholar 

  106. Nadif Kasri N, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, Missiaen L, De Smedt H, Conway SJ, Holmes AB, Berridge MJ, Roderick HL (2004) Regulation of InsP3 receptor activity by neuronal Ca2+ binding proteins. EMBO J 23:312–321

    Article  CAS  Google Scholar 

  107. Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279:547–555

    Article  PubMed  CAS  Google Scholar 

  108. White C, Yang J, Monteiro MJ, Foskett JK (2006) CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. J Biol Chem 281:20825–20833

    Article  PubMed  CAS  Google Scholar 

  109. Michikawa T, Hirota J, Kawano S, Hiraoka M, Yamada M, Furuichi T, Mikoshiba K (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23:799–808

    Article  PubMed  CAS  Google Scholar 

  110. Missiaen L, Parys JB, Weidema AF, Sipma H, Vanlingen S, De Smet P, Callewaert G, De Smedt H (1999) The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem 274:13748–13751

    Article  PubMed  CAS  Google Scholar 

  111. Sienaert I, Nadif Kasri N, Vanlingen S, Parys JB, Callewaert G, Missiaen L, De Smedt H (2002) Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365:269–277

    Article  PubMed  CAS  Google Scholar 

  112. Kang S, Kwon H, Wen H, Song Y, Frueh D, Ahn HC, Yoo SH, Wagner G, Park S (2011) Global dynamic conformational changes in the suppressor domain of IP3 receptor by stepwise binding of the two lobes of calmodulin. FASEB J 25:840–850

    Article  PubMed  CAS  Google Scholar 

  113. Hirota J, Ando H, Hamada K, Mikoshiba K (2003) Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 372:435–441

    Article  PubMed  CAS  Google Scholar 

  114. Yoo SH, Lewis MS (1995) Thermodynamic study of the pH-dependent interaction of chromogranin A with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. Biochemistry 34:632–638

    Article  PubMed  CAS  Google Scholar 

  115. Yoo SH (2000) Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci 23:424–428

    Article  PubMed  CAS  Google Scholar 

  116. Thrower EC, Park HY, So SH, Yoo SH, Ehrlich BE (2002) Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. J Biol Chem 277:15801–15806

    Article  PubMed  CAS  Google Scholar 

  117. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061

    Article  PubMed  CAS  Google Scholar 

  118. van Rossum DB, Patterson RL, Cheung KH, Barrow RK, Syrovatkina V, Gessell GS, Burkholder SG, Watkins DN, Foskett JK, Snyder SH (2006) DANGER, a novel regulatory protein of inositol 1,4,5-trisphosphate-receptor activity. J Biol Chem 281:37111–37116

    Article  PubMed  CAS  Google Scholar 

  119. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  PubMed  CAS  Google Scholar 

  120. Zeng W, Mak DO, Li Q, Shin DM, Foskett JK, Muallem S (2003) A new mode of Ca2+ signaling by G protein-coupled receptors: gating of IP3 receptor Ca2+ release channels by Gβγ. Curr Biol 13:872–876

    Article  PubMed  CAS  Google Scholar 

  121. Patterson RL, van Rossum DB, Kaplin AI, Barrow RK, Snyder SH (2005) Inositol 1,4,5-trisphosphate receptor/GAPDH complex augments Ca2+ release via locally derived NADH. Proc Natl Acad Sci USA 102:1357–1359

    Article  PubMed  CAS  Google Scholar 

  122. Zhang S, Hisatsune C, Matsu-Ura T, Mikoshiba K (2009) G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated Ca2+ signal regulation. J Biol Chem 284:29158–29169

    Article  PubMed  CAS  Google Scholar 

  123. Nguyen N, Francoeur N, Chartrand V, Klarskov K, Guillemette G, Boulay G (2009) Insulin promotes the association of heat shock protein 90 with the inositol 1,4,5-trisphosphate receptor to dampen its Ca2+ release activity. Endocrinology 150:2190–2196

    Article  PubMed  CAS  Google Scholar 

  124. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    Article  PubMed  CAS  Google Scholar 

  125. Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795–806

    Article  PubMed  CAS  Google Scholar 

  126. Devogelaere B, Sammels E, De Smedt H (2008) The IRBIT domain adds new functions to the AHCY family. Bioessays 30:642–652

    Article  PubMed  CAS  Google Scholar 

  127. Fujimoto T, Machida T, Tsunoda T, Doi K, Ota T, Kuroki M, Shirasawa S (2011) KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release. Biochem Biophys Res Commun 408:214–217

    Article  PubMed  CAS  Google Scholar 

  128. Zhang S, Malmersjo S, Li J, Ando H, Aizman O, Uhlen P, Mikoshiba K, Aperia A (2006) Distinct role of the N-terminal tail of the Na, K-ATPase catalytic subunit as a signal transducer. J Biol Chem 281:21954–21962

    Article  PubMed  CAS  Google Scholar 

  129. Patterson RL, van Rossum DB, Barrow RK, Snyder SH (2004) RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci USA 101:2328–2332

    Article  PubMed  CAS  Google Scholar 

  130. Wojcikiewicz RJ, Pearce MM, Sliter DA, Wang Y (2009) When worlds collide: IP3 receptors and the ERAD pathway. Cell Calcium 46:147–153

    Article  PubMed  CAS  Google Scholar 

  131. Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K (2010) Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J Biol Chem 285:36081–36091

    Article  PubMed  CAS  Google Scholar 

  132. Chan J, Yamazaki H, Ishiyama N, Seo MD, Mal TK, Michikawa T, Mikoshiba K, Ikura M (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099

    Article  PubMed  CAS  Google Scholar 

  133. Michikawa T, Hamanaka H, Otsu H, Yamamoto A, Miyawaki A, Furuichi T, Tashiro Y, Mikoshiba K (1994) Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J Biol Chem 269:9184–9189

    PubMed  CAS  Google Scholar 

  134. Galvan DL, Borrego-Diaz E, Perez PJ, Mignery GA (1999) Subunit oligomerization, and topology of the inositol 1,4, 5-trisphosphate receptor. J Biol Chem 274:29483–29492

    Article  PubMed  CAS  Google Scholar 

  135. Yoshikawa F, Iwasaki H, Michikawa T, Furuichi T, Mikoshiba K (1999) Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem 274:316–327

    Article  PubMed  CAS  Google Scholar 

  136. Maes K, Missiaen L, Parys JB, De Smet P, Sienaert I, Waelkens E, Callewaert G, De Smedt H (2001) Mapping of the ATP-binding sites on inositol 1,4,5-trisphosphate receptor type 1 and type 3 homotetramers by controlled proteolysis and photoaffinity labeling. J Biol Chem 276:3492–3497

    Article  PubMed  CAS  Google Scholar 

  137. Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203

    Article  PubMed  CAS  Google Scholar 

  138. Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700

    Article  PubMed  CAS  Google Scholar 

  139. Taylor C, da Fonseca P, Morris E (2004) IP3 receptors: the search for structure. Trends Biochem Sci 29:210–219

    Article  PubMed  CAS  Google Scholar 

  140. Sato C, Hamada K, Ogura T, Miyazawa A, Iwasaki K, Hiroaki Y, Tani K, Terauchi A, Fujiyoshi Y, Mikoshiba K (2004) Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. J Mol Biol 336:155–164

    Article  PubMed  CAS  Google Scholar 

  141. Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K (2002) Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J Biol Chem 277:21115–21118

    Article  PubMed  CAS  Google Scholar 

  142. Csordás G, Várnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  CAS  Google Scholar 

  143. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290

    Article  PubMed  CAS  Google Scholar 

  144. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  145. Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446

    Article  PubMed  CAS  Google Scholar 

  146. Dupont G, Goldbeter A (1993) One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium 14:311–322

    Article  PubMed  CAS  Google Scholar 

  147. Mak DO, McBride S, Foskett JK (2001) Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 InsP3 receptors. J Gen Physiol 117:435–446

    Article  PubMed  CAS  Google Scholar 

  148. Tu H, Wang Z, Bezprozvanny I (2005) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88:1056–1069

    Article  PubMed  CAS  Google Scholar 

  149. Pietri F, Hilly M, Mauger JP (1990) Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem 265:17478–17485

    PubMed  CAS  Google Scholar 

  150. De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA 89:9895–9899

    Article  PubMed  Google Scholar 

  151. Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 65:1727–1739

    Article  PubMed  CAS  Google Scholar 

  152. Hajnóczky G, Thomas AP (1997) Minimal requirements for calcium oscillations driven by the IP3 receptor. EMBO J 16:3533–3543

    Article  PubMed  Google Scholar 

  153. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412

    Article  PubMed  CAS  Google Scholar 

  154. Taylor CW, Tovey SC (2010) IP3 receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2:a004010

    Article  PubMed  CAS  Google Scholar 

  155. Sienaert I, De Smedt H, Parys JB, Missiaen L, Vanlingen S, Sipma H, Casteels R (1996) Characterization of a cytosolic and a luminal Ca2+ binding site in the type I inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:27005–27012

    Article  PubMed  CAS  Google Scholar 

  156. Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, Casteels R (1997) Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem 272:25899–25906

    Article  PubMed  CAS  Google Scholar 

  157. Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, Kurosaki T, Iino M (2001) Ca2+-sensor region of IP3 receptor controls intracellular Ca2+ signaling. EMBO J 20:1674–1680

    Article  PubMed  CAS  Google Scholar 

  158. Tu H, Nosyreva E, Miyakawa T, Wang Z, Mizushima A, Iino M, Bezprozvanny I (2003) Functional and biochemical analysis of the type 1 inositol (1,4,5)-trisphosphate receptor calcium sensor. Biophys J 85:290–299

    Article  PubMed  CAS  Google Scholar 

  159. Missiaen L, De Smedt H, Bultynck G, Vanlingen S, Desmet P, Callewaert G, Parys JB (2000) Calmodulin increases the sensitivity of type 3 inositol-1,4, 5-trisphosphate receptors to Ca2+ inhibition in human bronchial mucosal cells. Mol Pharmacol 57:564–567

    PubMed  CAS  Google Scholar 

  160. Adkins CE, Morris SA, De Smedt H, Sienaert I, Török K, Taylor CW (2000) Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem J 345:357–363

    Article  PubMed  CAS  Google Scholar 

  161. Sienaert I, De Smedt H, Parys JB, Missiaen L (1998) Regulation of Ca2+ release channels by luminal Ca2+. In: Verkhratsky A, Toescu E (eds) Integrative aspects of calcium signalling. Plenum Press, New York, pp 131–161

    Google Scholar 

  162. Missiaen L, Taylor CW, Berridge MJ (1991) Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature 352:241–244

    Article  PubMed  CAS  Google Scholar 

  163. Missiaen L, De Smedt H, Droogmans G, Casteels R (1992) Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature 357:599–602

    Article  PubMed  CAS  Google Scholar 

  164. Parys JB, Missiaen L, De Smedt H, Casteels R (1993) Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. Implications for the mechanism of quantal Ca2+ release. J Biol Chem 268:25206–25212

    PubMed  CAS  Google Scholar 

  165. Missiaen L, De Smedt H, Parys JB, Casteels R (1994) Co-activation of inositol trisphosphate-induced Ca2+ release by cytosolic Ca2+ is loading-dependent. J Biol Chem 269:7238–7242

    PubMed  CAS  Google Scholar 

  166. Tanimura A, Turner RJ (1996) Calcium release in HSY cells conforms to a steady-state mechanism involving regulation of the inositol 1,4,5-trisphosphate receptor Ca2+ channel by luminal [Ca2+]. J Cell Biol 132:607–616

    Article  PubMed  CAS  Google Scholar 

  167. Caroppo R, Colella M, Colasuonno A, DeLuisi A, Debellis L, Curci S, Hofer AM (2003) A reassessment of the effects of luminal [Ca2+] on inositol 1,4,5-trisphosphate-induced Ca2+ release from internal stores. J Biol Chem 278:39503–39508

    Article  PubMed  CAS  Google Scholar 

  168. Yamasaki-Mann M, Demuro A, Parker I (2010) Modulation of endoplasmic reticulum Ca2+ store filling by cyclic ADP-ribose promotes inositol trisphosphate (IP3)-evoked Ca2+ signals. J Biol Chem 285:25053–25061

    Article  PubMed  CAS  Google Scholar 

  169. Yamasaki-Mann M, Parker I (2011) Enhanced ER Ca2+ store filling by overexpression of SERCA2b promotes IP3-evoked puffs. Cell Calcium 50:36–41

    Article  PubMed  CAS  Google Scholar 

  170. Parys JB, Missiaen L, Smedt HD, Sienaert I, Casteels R (1996) Mechanisms responsible for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores. Pflugers Arch 432:359–367

    Article  PubMed  CAS  Google Scholar 

  171. McCarron JG, Olson ML, Rainbow RD, MacMillan D, Chalmers S (2007) Ins(1,4,5)P3 receptor regulation during ‘quantal’ Ca2+ release in smooth muscle. Trends Pharmacol Sci 28:271–279

    Article  PubMed  CAS  Google Scholar 

  172. Muallem S, Pandol SJ, Beeker TG (1989) Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem 264:205–212

    PubMed  CAS  Google Scholar 

  173. Meyer T, Stryer L (1990) Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc Natl Acad Sci USA 87:3841–3845

    Article  PubMed  CAS  Google Scholar 

  174. McCarron JG, Chalmers S, Muir TC (2008) “Quantal” Ca2+ release at the cytoplasmic aspect of the Ins(1,4,5)P3R channel in smooth muscle. J Cell Sci 121:86–98

    Article  PubMed  CAS  Google Scholar 

  175. Bezprozvanny I (2005) The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38: 261–272

    Article  PubMed  CAS  Google Scholar 

  176. Choe CU, Ehrlich BE (2006) The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006:re15

    Article  PubMed  Google Scholar 

  177. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  PubMed  CAS  Google Scholar 

  178. Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959–970

    Article  PubMed  CAS  Google Scholar 

  179. Wojcikiewicz RJ, Nahorski SR (1991) Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ mobilization and inositol 1,4,5-trisphosphate binding. J Biol Chem 266:22234–22241

    PubMed  CAS  Google Scholar 

  180. Wojcikiewicz RJ, Furuichi T, Nakade S, Mikoshiba K, Nahorski SR (1994) Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem 269:7963–7969

    PubMed  CAS  Google Scholar 

  181. Zhu CC, Wojcikiewicz RJ (2000) Ligand binding directly stimulates ubiquitination of the inositol 1, 4,5-trisphosphate receptor. Biochem J 348:551–556

    Article  PubMed  CAS  Google Scholar 

  182. Alzayady KJ, Wojcikiewicz RJ (2005) The role of Ca2+ in triggering inositol 1,4,5-trisphosphate receptor ubiquitination. Biochem J 392:601–606

    Article  PubMed  CAS  Google Scholar 

  183. Sliter DA, Aguiar M, Gygi SP, Wojcikiewicz RJ (2011) Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J Biol Chem 286:1074–1082

    Article  PubMed  CAS  Google Scholar 

  184. Magnusson A, Haug LS, Walaas SI, Østvold AC (1993) Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca2+-channel. FEBS Lett 323:229–232

    Article  PubMed  CAS  Google Scholar 

  185. Diaz F, Bourguignon LY (2000) Selective down-regulation of IP3 receptor subtypes by caspases and calpain during TNF alpha-induced apoptosis of human T-lymphoma cells. Cell Calcium 27:315–328

    Article  PubMed  CAS  Google Scholar 

  186. Hirota J, Furuichi T, Mikoshiba K (1999) Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J Biol Chem 274:34433–34437

    Article  PubMed  CAS  Google Scholar 

  187. Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J, Missiaen L, Callewaert G, Parys JB, De Smedt H (2004) Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 279:43227–43236

    Article  PubMed  CAS  Google Scholar 

  188. Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgo J, Agostinis P, Missiaen L, De Smedt H, Parys JB, Bultynck G (2011) IP3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 7:1472–1489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge all their past and present collaborators, and in particular Profs. L. Missiaen and G. Bultynck, for stimulating discussions and continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan B. Parys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Parys, J.B., De Smedt, H. (2012). Inositol 1,4,5-Trisphosphate and Its Receptors. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_11

Download citation

Publish with us

Policies and ethics