Advertisement

The Objectivist Approach

  • Daniel Courgeau
Chapter
Part of the Methodos Series book series (METH, volume 10)

Abstract

The objectivist approach of probability cannot be applied to all feelings of uncertainty, but only to events liable to occur in identical conditions, during repeated trials. Different types of axioms were proposed during the beginning of the twentieth century and led to the general acceptation of Kolmogorov’s ones. However, as the probability of a hypothesis is a meaningless notion, we can only test with this approach the probability of obtaining the observed sample if the hypothesis is true. We then give examples of application of this approach to some social sciences (political arithmetic, epidemiology and sociology). Finally we try to identify in more details different problems raised by this analysis and show that, in fact, they are often interlinked.

Keywords

Statistical Inference Life Table Objective Probability Annual Probability Objective Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arbuthnott, J. (1710). An argument for divine providence, taken from the constant regularity observ’d in the birth of both sexes. Philosophical Transactions of the Royal Society of London, 27, 186–190.Google Scholar
  2. Bacon, F. (1620). Novum Organum. London: J. Bill.Google Scholar
  3. Bellhouse, D. R. (2011) A new look at Halley’s life table. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(3), 823–832. The Royal Statistical Society Data Set Website: http://www.blackwellpublishing.com/rss/Readmefiles/A174p3bellhouse.htm. Accessed August 1, 2011.
  4. Bernoulli, J. I. (1713). Ars conjectandi. Bâle: Impensis Thurnisiorum fratrum.Google Scholar
  5. Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Mémoires de l’Académie Royale des Sciences de l’Année 1760, pp. 1–45.Google Scholar
  6. Bertrand, J. (1889). Calcul des probabilités. Paris: Gauthier-Villard et Fils.Google Scholar
  7. Borel, E. (1898). Leçons sur la théorie des fonctions. Paris: Gauthier-Villars et fils.Google Scholar
  8. Borel, E. (1909). Eléments de la théorie des probabilités. Paris: Librairie Hermann.Google Scholar
  9. Borel, E. (1914). Le hasard. Paris: Librairie Félix Alcan.Google Scholar
  10. Brian, E., & Jaisson, M. (2007). The descent of human sex ratio at birth (Methodos series, Vol. 4). Dordrecht: Springer.Google Scholar
  11. Broggi, U. (1907). Die Axiome der Wahrscheinlichkeitsrechnung. PhD thesis, Universität Göttingen, Göttingen.Google Scholar
  12. Cantelli, F. P. (1932). Una teoria astratta del calcolo delle probabilità. Giornale dell’Istituto Italiano degli Attuari, 8, 257–265.Google Scholar
  13. Cantelli, F. P. (1935). Considérations sur la convergence dans le calcul des probabilités. Annales de l’I.H.P., 5(1), 3–50.Google Scholar
  14. Cantor, G. (1873). Notes historiques sur le calcul des probabilités, Comptes-rendus de la session de l’association de recherche scientifique, Halle, pp. 34–42.Google Scholar
  15. Cantor, G. (1874). Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Journal de Crelle, 77, 258–262.Google Scholar
  16. Church, A. (1940). On the concept of a random sequence. Bulletin of the American Mathematical Society, 46(2), 130–135.Google Scholar
  17. Copeland, A. (1928). Admissible numbers in the theory of probability. American Journal of Mathematics, 50, 535–552.Google Scholar
  18. Copeland, A. (1936). Point set theory applied to the random selection of the digits of an admissible number. American Journal of Mathematics, 58, 181–192.Google Scholar
  19. Courgeau, D. (Ed.). (2003). Methodology and epistemology of multilevel analysis. Approaches from different social sciences (Methodos series, Vol. 2). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  20. Courgeau, D. (2004a). Du groupe à l’individu. Synthèse multiniveau. Paris: Ined.Google Scholar
  21. Courgeau, D. (2004b). Probabilités, démographie et sciences sociales. Mathématiques et Sciences Humaines, 42(3), 5–19.Google Scholar
  22. Courgeau, D. (2007a). Multilevel synthesis. From the group to the individual. Dordrecht: Springer.Google Scholar
  23. Courgeau, D., & Franck, R. (2007). Demography, a fully formed science or a science in the making. Population-E, 62(1), 39–45 (La démographie, science constituée ou en voie de constitution? Esquisse d’un programme. Population, 62(1), 39–46).Google Scholar
  24. Courgeau, D., & Lelièvre, E. (1989). Analyse démographique des biographies. Paris: Ined (English translation: (1992). Event history analysis in demography. Oxford: Clarendon Press. Spanish translation: (2001). Análisis demográfico de las biografías. México: El Colegio de México).Google Scholar
  25. Cournot, A.-A. (1843). Exposition de la théorie des chances et des probabilités. Paris: Hachette.Google Scholar
  26. D’Alembert, Jl. R. (1761a). Réflexions sur le calcul des Probabilités. In Opuscules Mathématiques (Vol. Tome II, pp. 1–25). Paris: David (Dixième Mémoire).Google Scholar
  27. D’Alembert, Jl. R. (1761b). Sur l’application du calcul des probabilités à l’inoculation de la petite vérole. In Opuscules Mathématiques (Vol. Tome II, pp. 26–46). Paris: David (Onzième mémoire).Google Scholar
  28. D’Alembert, Jl. R. (1768a). Extrait de plusieurs lettres de l’auteur sur différents sujets, écrites dans le courant de l’année 1767. In Opuscules Mathématiques (Vol. Tome IV, pp. 61–105). Paris: David (Vingt-troisième mémoire).Google Scholar
  29. D’Alembert, Jl. R. (1768b). Extraits de lettres sur le calcul des probabilités et sur les calculs relatifs à l’inoculation. In Opuscules Mathématiques (Tome IVth ed., pp. 283–341). Paris: David (Vingt-septième mémoire).Google Scholar
  30. de Moivre, A. (1711). De mensura sortis, seu, de probabilitate eventuum in ludis a casu fortuito pendentibus. Philosophical Transactions, 27(329), 213–264.Google Scholar
  31. de Moivre, A. (1718). The doctrine of chances: Or a METHOD of calculating the probabilities of events in PLAY. London: Millar (Third edition: 1756).Google Scholar
  32. de Montessus, R. (1908). Leçons élémentaires sur le calcul des probabilités. Paris: Gauthier Villars.Google Scholar
  33. de Montmort, P. R. (1713). Essay d’analyse sur les jeux de hazard (2nd ed.). Paris: Jacques Quillau.Google Scholar
  34. Delannoy, M. (1895). Sur une question de probabilités traitée par d’Alembert. Bulletin de la S.M.F., Tome 23, 262–265.Google Scholar
  35. Dellacherie, C. (1978). Nombres au hasard de Borel à Martin Löf, Gazette des Mathématiques du Québec, 11, 1978. (Version remaniée de l’Institut de Mathématiques, Université Louis-Pasteur de Strasbourg, (1978), 30 p).Google Scholar
  36. Descartes, R. (1647). Méditations, objections et réponses. In Œuvres et lettres. Paris: Gallimard.Google Scholar
  37. Durkheim, E. (1895). Les règles de la méthode sociologique. Paris: Alcan.Google Scholar
  38. Durkheim, E. (1897). Le suicide. Paris: Alcan.Google Scholar
  39. Feller, W. (1934). Review of Kolmogorov (1933). Zentralblatt für Mathematik und ihre Grenzegebiete, 7, 216.Google Scholar
  40. Feller, W. (1950). An introduction to the theory of probability and its applications (Vol. 1). New York: Wiley.Google Scholar
  41. Feller, W. (1961). An introduction to the theory of probability and its applications (Vol. 2). New York: Wiley.Google Scholar
  42. Fisher, R. A. (1922b). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society Series A, 222, 309–368.Google Scholar
  43. Fisher, R. A. (1923). Statistical tests of agreement between observation and hypothesis. Economica, 3, 139–147.Google Scholar
  44. Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society, 98, 39–82.Google Scholar
  45. Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver and Boyd.Google Scholar
  46. Fisher, R. A. (1958). The nature of probability. Centennial Review, 2, 261–274.Google Scholar
  47. Fisher, R. A. (1960). Scientific thought and the refinement of human reasoning. Journal of the Operations Research Society of Japan, 3, 1–10.Google Scholar
  48. Franck, R. (2007). Peut-on accroître le pouvoir explicatif des modèles en économie ? In A. Leroux & P. Livet (dir.), Leçons de philosophie économique (Tome III, pp. 303–354). Paris: Economica.Google Scholar
  49. Fréchet, M. (1915). Sur l’intégrale d’une fonctionnelle étendue à un ensemble abstrait. Bulletin de la S.M.F., Tome 43, 248–265.Google Scholar
  50. Fréchet, M. (1938). Exposé et discussion de quelques recherches récentes sur les fondements du calcul des probabilités. In R. Wavre (Ed.), Les fondements du calcul des probabilités (Vol. II, pp. 23–55). Paris: Hermann.Google Scholar
  51. Fréchet, M. (1951). Rapport général sur les travaux du calcul des probabilités. In R. Bayer (Ed.), Congrès International de Philosophie des Sciences, Paris, 1949; IV: Calcul des probabilités (pp. 3–21). Paris: Hermann.Google Scholar
  52. Friedman, M., & Savage, L. J. (1948). The utility analysis of choices involving risk. The Journal of Political Economy, LVI(4), 279–304.Google Scholar
  53. Galileo, G. (1613). Istoria e dimostrazioni intorno alle macchie solari e loro accidenti. Roma: Giacomo Mascardi.Google Scholar
  54. Gosset, W. S. (1908a). The probable error of a mean. Biometrika, 6(1), 1–25 (Student).Google Scholar
  55. Gosset, W. S. (1908b). Probable error of a correlation coefficient. Biometrika, 6(2–3), 302–310 (Student).Google Scholar
  56. Graetzer, J. (1883). Edmund Halley und Caspar Neumann: Ein Beitrag zur Geschichte der Bevölkerungsstatistik. Breslau: Schottlaender.Google Scholar
  57. Granger, G.-G. (1994). Formes, opérations, objets. Paris: Librairie Philosophique Vrin.Google Scholar
  58. Graunt, J. (1662). Natural and political observations mentioned in a following index, and made upon the bills of mortality. London: Tho: Roycroft, for John Martin, James Allestry, and Tho: Dicas. (French translation by Vilquin E., Observations Naturelles et Politiques répertoriées dans l’index ci-après et faites sur les bulletins de mortalité. (1977). Paris: Ined).Google Scholar
  59. Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University Press.Google Scholar
  60. Hadamard, J. (1922). Les principes du calcul des probabilités. Revue de Métaphysique et de Morale, 29(3), 289–293.Google Scholar
  61. Halley, E. (1693). An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funeral’s at the City of Breslau; with an attempt to ascertain the price of the annuities upon lives. Philosophical Transactions Giving some Accounts of the Present Undertaking, Studies and Labour of the Ingenious in many Considerable Parts of the World, XVII(196), 596–610.Google Scholar
  62. Henry, L. (1957). Un exemple de surestimation de la mortalité par la méthode de Halley. Population, 12(1), 141–142.Google Scholar
  63. Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8(2), 437–439.Google Scholar
  64. Hoem, J. (1983). Multistate mathematical demography should adopt the notions of event history analysis. Stockholm Research Reports in Demography, 10.Google Scholar
  65. Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.Google Scholar
  66. Kamke, E. (1932). Über neure Begründungen der Wahrscheinlichkeitsrechnung. Jahresbericht der Deutschen Mathematiker-Vereinigung, 42, 14–27.Google Scholar
  67. Kendall, M. G. (1963). Ronald Aylmer Fisher, 1890–1962. Biometrika, 50(1/2), 1–15.Google Scholar
  68. Kolmogorov, A. (1933). Grundbegriffe der wahrscheinlichkeitsrenung. In Ergebisne der Mathematik, (Vol. 2) Berlin: Springer (English translation, Morrison, N. (1950). Foundations of the theory of probability New York: Chelsea).Google Scholar
  69. Kolmogorov, A. (1951). Bepoятнocть (Probability). In Great Soviet encyclopedia (Vol. 7, pp. 508–510). Moscow: Soviet Encyclopedia Publishing House.Google Scholar
  70. Kuhn, T. (1962). The structure of scientific revolutions. Chicago/London: The University of Chicago Press.Google Scholar
  71. Kuhn, T. (1970). Postscript-1969. In The structure of scientific revolutions (2nd ed., pp. 174–210). Kuhn/Chicago/London: The University of Chicago Press.Google Scholar
  72. Laemmel, R. (1904). Untersuchungen über die Ermittlung von Wahrscheinlichkeiten. PhD, Universität Zürich.Google Scholar
  73. Le Bras, H. (2000). Naissance de la mortalité. L’origine politique de la statistique et de la démographie. Paris: Seuil/Gallimard.Google Scholar
  74. Lebesgue, H. (1901). Sur une généralisation de l’intégrale définie. Comptes Rendus de l’Académie des Sciences, 132, 1025–1028.Google Scholar
  75. Leibniz, G.W. (1675). De problemata mortalitatis propositum per ducem de Roannez. Partie A du manuscrit traduite en français par M. Parmentier (1995). Paris: Librairie Philosophique Vrin.Google Scholar
  76. Lévy, P. (1925). Calcul des probabilités. Paris: Gauthier-Villars.Google Scholar
  77. Lévy, P. (1936). Sur quelques points de la théorie des probabilités dénombrables. Annales de l’Institut Henri Poincaré, 6(2), 153–184.Google Scholar
  78. Lévy, P. (1937). Théorie de l’addition des variables aléatoires. Paris: Gauthier-Villars.Google Scholar
  79. Martin-Löf, P. (1966). The definition of random sequences. Information and Control, 7, 602–619.Google Scholar
  80. Masterman, M. (1970). The nature of a paradigm. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 59–89). Cambridge: Cambridge University Press.Google Scholar
  81. Matalon, B. (1967). Epistémologie des probabilités. In J. Piaget (Ed.), Logique et connaissance scientifique (pp. 526–553). Paris: Gallimard.Google Scholar
  82. Maupin, M. G. (1895). Note sur une question de probabilités traitée par d’Alembert dans l’encyclopédie. Bulletin de la S.M.S., Tome 23, 185–190.Google Scholar
  83. McKinsey, J. C. C., Sugar, A., & Suppes, P. (1953). Axiomatic foundations of classical particle mechanics. Journal of Rational Mechanics and Analysis, 2, 273–289.Google Scholar
  84. Newton, I. (1687). Philosophia naturalis principia mathematica. Londini: S. Pepys.Google Scholar
  85. Neyman, J., & Pearson, E. S. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference. Part I. Biometrika, 20A, 175–240.Google Scholar
  86. Neyman, J., & Pearson, E. S. (1933a). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London Series A, 231, 289–337.Google Scholar
  87. Neyman, J., & Pearson, E. S. (1933b). The testing of statistical hypotheses in relation to probabilities a priori. Proceedings of the Cambridge Philosophical Society, 26, 492–510.Google Scholar
  88. Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50(5th series), 157–175.Google Scholar
  89. Poincaré, H. (1912). Calcul des probabilités. Paris: Gauthier-Villars.Google Scholar
  90. Popper, K. (1959). The propensity interpretation of probability. Philosophy of Science, 10, 25–42.Google Scholar
  91. Popper, K. (1982). The postscript to the logic of scientific discovery (Quantum theory and the schism in physics, Vol. III). London: Hutchinson.Google Scholar
  92. Popper, K. (1983). The postscript of the logic of scientific discovery (Realism and the aim of science, Vol. I). London: Hutchinson.Google Scholar
  93. Pressat, R. (1966). Principes d’analyse. Paris: INED.Google Scholar
  94. Radon, J. (1913). Theorie und Anwendungen der absolut Additiven Mengenfunktionen. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse 122IIa, 1295–1438.Google Scholar
  95. Reungoat, S. (2004). William Petty. Observateur des Îles Britanniques. Classiques de l’économie et de la population. Paris: Ined.Google Scholar
  96. Rohrbasser, J.-M. (2002). Qui a peur de l’arithmétique? Les premiers essais de calcul sur les populations dans la seconde moitié du XVIIe siècle. Mathématiques et Sciences Humaines, 159, 7–41.Google Scholar
  97. Royall, R. M. (1970). On finite population theory under certain linear regression models. Biometrika, 57(2), 377–387.Google Scholar
  98. Savage, L. J. (1976). On reading R.A. Fisher. The Annals of Statistics, 4(3), 441–500.Google Scholar
  99. Shafer, G., & Vovk, V. (2005). The origins and legacy of Kolmogorov’s Grundbegriffe. Working paper 4, Project web site: http://probabilityandfinance.com, 104 p. Accessed July 11, 2011.
  100. Steinhaus, H. (1923). Les probabilités dénombrables et leur rapport à la théorie de la mesure. Fundamenta Mathematicae, 4, 286–310.Google Scholar
  101. Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana/Chicago: University of Illinois Press.Google Scholar
  102. Suppes, P. (2002a). Representation and invariance of scientific structures. Stanford: CSLI Publications.Google Scholar
  103. Suppes, P. (2002b). Representation of probability. In P. Suppes (Ed.), Representation and invariance of scientific structures (pp. 129–264). Stanford: CSLI Publications.Google Scholar
  104. Süssmilch, J. P. (1741). Die göttliche Ordnung in den Veränderungen des menschlichen Geschlechts, aus der Geburt, Tod, und Fortpflanzung desselben erwiesen. Berlin: zu finden bei J.C. Spener.Google Scholar
  105. Todhunter, I. (1865). A history of the theory of probability from the time of Pascal to that of Laplace. Cambridge/London: Macmillan and Co.Google Scholar
  106. Tornier, E. (1929). Wahrscheinlichkeisrechnunug und zalhlentheorie. Journal für die Teine und Angewandte Mathematik, 60, 177–198.Google Scholar
  107. Van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.Google Scholar
  108. Van Imhoff, E., & Post, W. (1997). Méthodes de micro-simulation pour des projections de population, Population (D. Courgeau ed), 52 (4), pp. 889–932 ((1998). Microsimulation methods for population projections. Population. An English Selection (D. Courgeau ed), 10 (1), pp. 97–138).Google Scholar
  109. van Lambalgen, M. (1987). Von Mises’ definition of random sequences reconsidered. The Journal of Symbolic Logic, 32(3), 725–755.Google Scholar
  110. Venn, J. (1866). The logic of chance. London: Macmillan.Google Scholar
  111. Ville, J. A. (1939). Étude critique de la notion de collectif. Paris: Gauthier-Villars.Google Scholar
  112. Voltaire (1734). Lettre XI. Sur l’insertion de la petite vérole. In Lettres Philosophiques, Basle.Google Scholar
  113. von Mises, R. (1919). Grundlagen der wahrscheinlichkeitesrechnung. Mathematische Zeitschrift, 5, 52–99.Google Scholar
  114. von Mises, R. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Wien: Springer (English translation: (1957). Probability, statistics and truth. London: George Allen & Unwin Ltd).Google Scholar
  115. von Mises, R. (1932). Théorie des probabilités. Fondements et applications. Annales de l’Institut Henri Poincaré, 3(2), 137–190.Google Scholar
  116. von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behaviour. Princeton: Princeton University Press.Google Scholar
  117. Waismann, F. (1930). Logische Analyse des wahrscheinlichkeisbegriffs. Erkenntnis, 1, 228–248.Google Scholar
  118. Wald, A. (1936). Sur la notion de collectif dans le calcul des probabilités. Comptes Rendus des Séances de l’Académie des Sciences, 202, 180–183.Google Scholar
  119. Wargentin, P. W. (1766). Mortalité en Suède, selon le ‘Tabel-Verket’. Actes de l’Académie des Sciences de Stockholm.Google Scholar
  120. Wavre, R. (1938–1939). Colloque consacré à la théorie des probabilités, Fascicules 734–740; 766. Paris: Hermann.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Daniel Courgeau
    • 1
  1. 1.Institut National d’Etudes Démographiques (INED)Paris Cedex 20France

Personalised recommendations