Skip to main content

Artificial Intelligence

  • Chapter
  • First Online:
Statistics Applied to Clinical Studies

Abstract

Artificial intelligence is an engineering method that simulates the structures and operating principles of the human brain. Much is unknown of how the brain trains itself to process information, but we do know that brain cells, called neurons, can be activated to send an electric signal through long thin stands called axons. At the end of the axon a structure called the synapse connects the axon with a connected neuron, and provides it with excitatory/inhibitory imput or when the signal is too weak no imput at all. Learning processes in the brain is thought to take place by repeated similar electric signals at similar places giving rise to similar outcomes observed by the brain. This principle can be modeled by artificial neural networks software using observed variables as artificial signals. Software is available in SPSS, MATLAB and so forth: in the current paper SPSS version 17.0, with neural network add-on has been applied (WWW.SPSS.COM). Artificial neural networks are different from traditional statistics that usually assumes Gaussian curve distributions for making predictions from the data. In practice data, sometimes, do not follow Gaussian distributions, and, for that purpose, distribution-free methods, like non-parametric tests and Monte Carlo methods, have been developed. The artificial neural network is another distribution-free method based on layers of artificial neurons that transduce imputed information. It has been recognized to have a number of advantages including the possibility to process imperfect data, and complex non linear data (Stergiou and Siganos 2004). The current chapter reviews the principles, procedures, and limitations of BP artificial neural networks for a non-mathematical readership.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew AM (2004) Work of Warren McCulloch. Kybernetes 33:141–146

    Article  Google Scholar 

  • Atiqi R, Van Iersel C, Cleophas TJ (2009) Accuracy of quantitative diagnostic tests. Int J Clin Pharmacol Ther 47:153–159

    PubMed  CAS  Google Scholar 

  • Baxt WG, Skora J (1996) Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet 347:12–15

    Article  PubMed  CAS  Google Scholar 

  • Bryce TJ, Dewhirst MW, Floyd CE, Hars V, Brizel DM (1998) Artificial neural networks of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 41:339–345

    Article  PubMed  CAS  Google Scholar 

  • Bugliosi R, Tribalto M, Avvisati G, Boccardoro M, De Martinis C, Friera R, Mandelli F, Pileri A, Papa G (1994) Classificiation of patients affected by multiple myeloma using neural network software. Eur J Haematol 52:182–183

    Article  PubMed  CAS  Google Scholar 

  • Doornewaard H, Van der Schouw YT, Van der Graaf Y, Bos AB, Habbema JD, Van den Tweel JG (1999) The diagnostic value of computer assisted primary smear screening: a longitudinal cohort study. Mod Pathol 12:995–1000

    PubMed  CAS  Google Scholar 

  • Eftekbar B, Mohammad K, Ardebilli HE, Ghodsi M, Ketabchi E (2005) Comparison of artificial neural network and regression models for prediction of mortality in head trauma based on clinical data. BMC Med Inform Decis Mak 5:3–9

    Article  Google Scholar 

  • Ellenius J, Groth T, Lindahl B (1997) Neural network of biochemical markers for early assessment of acute myocardial infarction. Stud Health Technol Inform 43:382–385

    PubMed  Google Scholar 

  • Finne P, Finne R, Auvinen A, Juusela H, Aro J, Maattanen L, Hakama M, Ranniko S, Tammela TL, Stenman U (2000) Predicting the outcome of prostate biopsy in screen positive men by a multilayer perceptron network. Urology 56:418–422

    Article  PubMed  CAS  Google Scholar 

  • Gamito EJ, Stone NN, Batuello JT, Crawford ED (2000) Use of artificial neural networks in the clinical staging of prostate cancer. Tech Urol 6:60–63

    PubMed  CAS  Google Scholar 

  • Glas JO, Reddick WE (1998) Hybrid artificial neural netwwork segmentation and classification of dynamic contrast enhanced MR imaging of osteosarcoma. Magn Reson Imaging 16:1075–1083

    Article  Google Scholar 

  • Goodenday LS, Cios KJ, Shin L (1997) Identifying coronary stenosis using an image recognition neural network. IEEE Eng Med Bio Mag 16:139–144

    Article  CAS  Google Scholar 

  • Haycock GB, Schwarz GJ, Wisotsky DH (1978) Body surface area calculated from the height and weight. J Pediatr 93:62–66

    Article  PubMed  CAS  Google Scholar 

  • Heden B, Edenbrandt L, Hasity WK, Pahlm O (1994) Artificial neural networks for electrocardiographic diagnosis of healed myocardial infarction. Am J Cardiol 74:5–8

    Article  PubMed  CAS  Google Scholar 

  • Kothari R, Cualing H, Balachander T (1996) Neural network analysis of flow cytometry immunophenotype data. IEEE Biomed Eng 43:803–810

    Article  CAS  Google Scholar 

  • Lindahl D, Toft J, Hesse B, Palmer J, Ali S, Lundin A, Edenbrandt L (2000) Scandinavian test of artificial neural network for classification of myocardial perfusion images. Clin Physiol 20:253–261

    Article  PubMed  CAS  Google Scholar 

  • Lytton WW (2002) From artificial neural network to realistic neural network. In: From computer to brain. Springer, New York, pp 259–268

    Google Scholar 

  • Mango LJ, Valente PT (1998) Neural networks assisted analysis and microscopic rescreening in presumed negative cervical cytologic smears. Acta Cytol 42:227–232

    Article  PubMed  CAS  Google Scholar 

  • Minsky M (1974) A framework for representing knowledge. Technical Report Massachusetts Institute of Technology, AIM-306, Cambridge MA, USA

    Google Scholar 

  • Mitchell D, Strydom NB, Van Graan CH, Van der Walt H (1971) Human surface area: comparison of the du Bois formula with direct photometric measurement. Eur J Physiol 325:188–190

    Article  CAS  Google Scholar 

  • Naguib RN, Adams AE, Horne CH, Angus B, Sherbet GV, Lennard TW (1996) The detection of nodal metastasis in breast cancer using neural networks. Physiol Meas 17:297–303

    Article  PubMed  CAS  Google Scholar 

  • Papik K, Molnar B, Fedorczak P, Schaefer R, Lang F, Sreter L, Feher J, Tulassay Z (1999) Automated prozone effect detection in ferritin homogenous assays using neural networks. Clin Chem Lab Med 37:471–476

    Article  PubMed  CAS  Google Scholar 

  • Patil N, Smith TJ (2009) Neural network analysis speeds disease risk predictions, innovative clinical models transform cardiovascular assessment algorithms. Sci Comput; Rockaway NJ 07866. www.scientificcomputing.com, 15 Dec 2011

  • Polak MJ, Zhou SH, Rautaharju PM, Armstrong WW, Chaitman BR (1997) Using automated analysis of resting twelve lead ECG to identify patients at risk of developing transient myocardial ischaemia. Physiol Meas 18:317–325

    Article  PubMed  CAS  Google Scholar 

  • Prismatic Project Management Team (1999) Assessment of automated primary screening on PAPNET of cervical smears in the PRISMATIC trial. Lancet 353:1381–1385

    Article  Google Scholar 

  • Queralto JM, Torres J, Guinot M (1999) Neural networks for the biochemical prediction of bone mass. Clin Chem Lab Med 37:831–838

    Article  PubMed  CAS  Google Scholar 

  • Redding NJ, Kowalczyk A, Downs T (1993) Constructive higher order network algorithms that is polynomial time. Neural Netw 6:997–1010

    Article  Google Scholar 

  • Rosenblatt F (1962) Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan, Washington, DC

    Google Scholar 

  • Rumbelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  • Selker HP, Griffith JL, Patil S, Long WJ, D’Agostino RB (1995) A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. J Investig Med 43:468–476

    PubMed  CAS  Google Scholar 

  • Sherman ME, Schiffman MH, Mango LJ, Kelly D, Acosta D, Cason Z, Elgert P, Zaleski S, Scot DR, Kurman R, Stoler M, Lorincz AT (1997) Evaluation of PAPNET testing as an ancillary tool to clarify the status of the atypical cervical smear. Mod Pathol 10:564–567

    PubMed  CAS  Google Scholar 

  • Si Y, Gotman J, Pasupathy A, Flanagan D, Rosenblatt B, Gottesman R (1998) An expert system for EEG monitoring in the pediatric intensive care. Electroencephalogr Clin Neurophysiol 106:488–500

    Article  PubMed  CAS  Google Scholar 

  • Simpson JH, McArdle C, Pauson AW, Hume P, Turkes A, Griffiths K (1995) A non-invasive test for the pre-cancerous breast. Eur J Cancer 31A:1768–1772

    Article  PubMed  CAS  Google Scholar 

  • Sperduti A, Starita A (1993) Speed up learning and network optimization with extended back propagation. Neural Netw 6:365–383

    Article  Google Scholar 

  • Stergiou C, Siganos D (2004) Neural networks. www.doc.ic.ac.uk, 15 Dec 2011

  • Stock A, Rogers MS, Li A, Chang AM (1994) Use of neural networks for hypothesis generation in fetal surveillance. Baillieres Clin Obstet Gynaecol 8:533–548

    Article  PubMed  CAS  Google Scholar 

  • Wnek J, Michalski RS (1994) Hypothesis driven constructive induction in AQ17-HCI: a method and experiments. Mach Learn 14:139–168

    Article  Google Scholar 

  • Zernikow B, Holtmannspotter K, Michel E, Theilhaber M, Pielemeier W, Hennecke KH (1998) Artificial neural network for predicting intracranial haemorrhage in preterm neonates. Acta Paediatr 87:969–975

    Article  PubMed  CAS  Google Scholar 

  • Zernikow B, Holtmannspotter K, Michel E, Hornschuh F, Groote K, Hennecke KH (1999) Predicting length of stay in preterm neonates. Eur J Pediatr 158:59–62

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cleophas, T.J., Zwinderman, A.H. (2012). Artificial Intelligence. In: Statistics Applied to Clinical Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2863-9_58

Download citation

Publish with us

Policies and ethics