Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

  • Zdenko Machala
  • Barbora Tarabová
  • Michal Pelach
  • Zuzana Šipoldová
  • Karol Hensel
  • Mário Janda
  • Libuša Šikurová
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.


Tooth Surface Human Tooth Negative Corona Streamer Corona Indirect Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Effort sponsored by Slovak grant agency VEGA 1/0668/11 and 1/0711/09, Slovak Research and Development Agency APVV SK-CZ-0179-09. The human teeth were provided by patients of Dr. O. Šipoldová. We thank P. Lukeš (IPP Prague) for his motivating ideas, and I. Jedlovský and B. Pongrác (FMFI Bratislava) for assistance.


  1. 1.
    Akishev Yu, Grushin M, Karalnik V, Trushkin N, Kholodenko V, Chugunov V, Kobzev E, Zhirkova N, Irkhina I, Kireev G (2008) Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl Chem 80:1953CrossRefGoogle Scholar
  2. 2.
    Sigmond RS, Kurdelova B, Kurdel M (1999) Action of corona discharges on bacteria and spores. Czech J Phys 49:405ADSCrossRefGoogle Scholar
  3. 3.
    Scholtz V, Julák J, Kříha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Processes Polym 7:237–243CrossRefGoogle Scholar
  4. 4.
    Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A (2011) Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to hole spark discharge (PHD) plasma. J Phys D Appl Phys 44:075201 (10pp)ADSCrossRefGoogle Scholar
  5. 5.
    Kuo SP, Tarasenko O, Chang J, Popovic S, Chen CY, Fan HW, Scott A, Lahiani M, Alusta P, Drake JD, Nikolic M (2009) Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J Phys 11:115016CrossRefGoogle Scholar
  6. 6.
    Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310ADSCrossRefGoogle Scholar
  7. 7.
    Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, Ayan H, Friedman HG (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Processes Polym 4:370CrossRefGoogle Scholar
  8. 8.
    Ayan H, Staack D, Fridman G, Gutsol A, Muhkin Y, Starikovskii A, Fridman A, Friedman G (2009) Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces. J Phys D Appl Phys 42:125202ADSCrossRefGoogle Scholar
  9. 9.
    Tang YZ, Lu XP, Laroussi M, Dobbs FC (2008) Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media. Plasma Processes Polym 5:552CrossRefGoogle Scholar
  10. 10.
    Qiong T, Wenju J, Zhang Y, Zhishan Y, Mariana LT (2009) Inactivation of dinoflagellate Scrippsiella trochoidea in synthetic ballast water by reactive species generated from dielectric barrier discharges. J Phys D Appl Phys 42:095203ADSCrossRefGoogle Scholar
  11. 11.
    Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81CrossRefGoogle Scholar
  12. 12.
    Yasuda H, Hashimoto M, Rahman M, Takashima A, Mizuno A (2008) States of biological components in bacteria and bacteriophages during inactivation by atmospheric dielectric barrier discharges. Plasma Processes Polym 5:615CrossRefGoogle Scholar
  13. 13.
    Dobrynin D, Fridman G, Mukhin YV, Wynosky-Dolfi MA, Rieger J, Rest RF, Gutsol AF, Fridman A (2010) Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (Anthrax) Spores. IEEE Trans Plasma Sci 39:1878–1883Google Scholar
  14. 14.
    Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28:41ADSCrossRefGoogle Scholar
  15. 15.
    Pointu AM, Ricard A, Dodet B, Odic E, Larbre J, Ganciu M (2005) Production of active species in N2–O2 flowing post-discharges at atmospheric pressure for sterilization. J Phys D Appl Phys 38:1905ADSCrossRefGoogle Scholar
  16. 16.
    Jiang C, Chen MT, Gorur A, Schaudinn C, Jaramillo DE, Costerton JW, Sedghizadeh PP, Vernier PT, Gundersen MA (2009) Nanosecond pulsed plasma dental probe. Plasma Processes Polym 6:479CrossRefGoogle Scholar
  17. 17.
    Mizuno A, Hori Y (1988) Destruction of living cells by pulsed high-voltage application. IEEE Trans Ind Appl 24:387CrossRefGoogle Scholar
  18. 18.
    Lukeš P, Člupek M, Babický V, Šunka P (2008) Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Sci Technol 17:024012ADSCrossRefGoogle Scholar
  19. 19.
    Brandenburg R, Ehlbeck J, Stieber M, Woedtke Tv, Zeymer J, Schluter O, Weltmann KD (2007) Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet. Contrib Plasma Phys 47:72ADSCrossRefGoogle Scholar
  20. 20.
    Gweon B, Kim DB, Moon SY, Choe W (2009) Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions. Curr Appl Phys 9:625ADSCrossRefGoogle Scholar
  21. 21.
    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020CrossRefGoogle Scholar
  22. 22.
    Lu X, Ye T, Cao Y, Sun Z, Xiong Q, Tang Z, Xiong Z, Hu J, Jiang Z, Pan Y (2008) The roles of the various plasma agents in the inactivation of bacteria. J Appl Phys 104:053309ADSCrossRefGoogle Scholar
  23. 23.
    Laroussi M (2005) Low temperature plasma-based sterilization: Overview and state-of-the-art. Plasma Processes Polym 2:391CrossRefGoogle Scholar
  24. 24.
    Machala Z, Jedlovský I, Chládeková L, Pongrác B, Giertl D, Janda M, Šikurová L, Polčic P (2009) DC discharges in atmospheric air for bio-decontamination - spectroscopic methods for mechanism identification. Eur Phys J D 54:195ADSCrossRefGoogle Scholar
  25. 25.
    Machala Z, Chládeková L, Pelach M (2010) Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D Appl Phys 43:222001ADSCrossRefGoogle Scholar
  26. 26.
    Lu X, Cao Y, Yang P, Xiong Q, Xiong Z, Xian Y, Pan Y (2009) An RC plasma device for sterilization of root canal of teeth. IEEE Trans Plasma Sci 37:668–673ADSCrossRefGoogle Scholar
  27. 27.
    Sladek REJ, Stoffels E, Walraven R, Tielbeek PJA, Koolhoven RA (2004) Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci 32:1540–1543ADSCrossRefGoogle Scholar
  28. 28.
    Yu QS, Huang C, Hsieh F, Huff HE, Duan YX (2007) Bacterial inactivation using a low-­temperature atmospheric plasma brush sustained with argon gas. J Biomed Mater Res B Appl Biomater 80:211–219Google Scholar
  29. 29.
    Borra J-P, Ehouarn P, Boulaud D (2004) Electrohydrodynamic atomisation of water stabilised by glow discharge - operating range and droplet properties. J Aerosol Sci 35:1313CrossRefGoogle Scholar
  30. 30.
    Bachowski GJ, Pintar TJ, Girotti AW (1991) Photosensitized lipid-peroxidation and enzyme inactivation by membrane-bound merocyanine-540 - reaction-mechanisms in the absence and presence of ascorbate. Photochem Photobiol 53:481CrossRefGoogle Scholar
  31. 31.
    Machala Z, Janda M, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V, Morvová M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243:194ADSCrossRefGoogle Scholar
  32. 32.
    Machala Z, Jedlovský I, Martišovitš V (2008) DC discharges in atmospheric air and their transitions. IEEE Trans Plasma Sci 36:918ADSCrossRefGoogle Scholar
  33. 33.
    Janda M, Martišovitš V, Machala Z (2011) Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters. Plasma Sources Sci Technol 20:035015ADSCrossRefGoogle Scholar
  34. 34.
    Oehmingen K, Hahnel M, Brandenburg R, Wilke Ch, Weltmann KD, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes Polym 7:250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zdenko Machala
    • 1
  • Barbora Tarabová
    • 2
  • Michal Pelach
    • 2
  • Zuzana Šipoldová
    • 2
  • Karol Hensel
    • 1
  • Mário Janda
    • 1
  • Libuša Šikurová
    • 2
  1. 1.Division of Environmental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Division of Biomedical Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations