Applications of Excilamps in Microbiological and Medical Investigations

  • Victor F. Tarasenko
  • E. A. Sosnin
  • O. S. Zhdanova
  • E. P. Krasnozhenov
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

In a course long-term and comparative studies it has been shown, that the DBD XeBr-excilamps looks as a good choice for various microorganisms inactivation. The first data about bacteriophage inactivation by XeBr-excilamp has been obtained. Radiant modules for industrial treatment on contaminated water have been developed. The XeCl-excilamp for treatment of skin diseases has been created and tested.

Keywords

Dielectric Barrier Discharge Capacitive Discharge Exciplex Lamp Radiant Exitance Microorganism Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the Federal Target Program “The scientific and scientific-pedagogical personnel of Innovative Russia”, State contract No. 02.740.11.0562. Discussions with L.V. Lavrent’eva, U. Kogelschatz, T. Oppenläender and technical assistance of S.M. Avdeev, A.V. Gritzyta, M.V. Erofeev, D.V. Schitz, V.S. Skakun are gratefully acknowledged.

References

  1. 1.
    Kogelschatz U (2004) Excimer lamps: history, discharge physics and industrial applications. Proc SPIE 5483:272–286ADSCrossRefGoogle Scholar
  2. 2.
    Baum G, Oppenländer T (1995) VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor. Chemosphere 30:1781–1790CrossRefGoogle Scholar
  3. 3.
    Lomaev MI, Skakun VS, Sosnin EA, Tarasenko VF, Shitts DV, Erofeev MV (2003) Excilamps: efficient sources of spontaneous UV and VUV radiation. Phys Usp 46:193–210ADSCrossRefGoogle Scholar
  4. 4.
    Sosnin EA, Oppenländer T, Tarasenko VF (2006) Applications of capacitive and barrier ­discharge excilamps in photoscience. J Photochem Photobiol C Photochem Rev 7:145–163CrossRefGoogle Scholar
  5. 5.
    Lomaev MI, Sosnin EA, Tarasenko VF, Shits DV, Skakun VS, Erofeev MV, Lisenko AA (2006) Capacitive and barrier discharge excilamps and their applications. Instrum Exp Tech 49:595–616CrossRefGoogle Scholar
  6. 6.
    Sosnin EA, Sokolova IV, Tarasenko VF (2008) Development and applications of novel UV and VUV excimer and exciplex lamps for the experiments in photochemistry. In: Sanchez A, Gutierrez SJ (eds) Photochemistry research progress. Nova, New York, pp 225–269Google Scholar
  7. 7.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46CrossRefGoogle Scholar
  8. 8.
    Sosnin EA, Erofeev MV, Lisenko AA, Tarasenko VF, Shits DV (2002) Study of the service characteristics of a capacitive-discharge excilamp. J Opt Technol 69:509–511CrossRefGoogle Scholar
  9. 9.
    Avdeev SM, Sosnin ÉA, Tarasenko VF (2010) Factors that limit the service life of sealed chlorine-containing barrier-discharge exciplex lamps. J Opt Technol 77:42–44CrossRefGoogle Scholar
  10. 10.
    Shits DV, Avdeev SM, Skakun VS, Sosnin EA, Tarasenko VF (2011) Powerful portable module fpr UV irradiation based on inert gas-halogen mixtures. Russ Phys J 53:109–112 (in print)Google Scholar
  11. 11.
    Sosnin EA, Lavrent’eva LV, Yusupov MR, Masterova YV, Tarasenko VF (2002) Inactivation of Escherichia coli using capacitive discharge excilamps. In: Proceedings of the 2nd international workshop on biological effects of electromagnetic fields, Rhodes, Greece, pp 953–957, 7–11 OctGoogle Scholar
  12. 12.
    Oppenländer T, Baum G (1996) Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren. Wasser-Abwasser 137:321–325Google Scholar
  13. 13.
    Lavren’eva LV, Sosnin EA, Masterova YaV (2003) UV inactivation of microorganisms: comparative analysis of methods. Bull Tomsk State Univ Biol Sci 30:163–176Google Scholar
  14. 14.
    Laroussi M (2002) 2002. Non-thermal decontamination of biological media by atmospheric pressure plasmas: review, analysis and prospects. IEEE Trans Plasma Sci 30:1409–1415ADSCrossRefGoogle Scholar
  15. 15.
    Avdeev SM, Sosnin EA, Velichevskaya KYu, Lavrent’eva LV (2008) Comparative study of UV radiation action of XeBr-excilamp and conventional low-pressure mercury lamp on bacteria. Proc SPIE 6938:693813CrossRefGoogle Scholar
  16. 16.
    Kalisvaart BF (2004) Re-use of wastewater: preventing the recovery of pathogens by using medium-pressure UV lamp technology. Water Sci Technol 50:337–344Google Scholar
  17. 17.
    Avdeev SM, Velichevskaya KYu, Sosnin EA, Tarsenko VF, Lavret’eva LV (2008) Analysis of germicidal action of UV radiation of excimer and exciplex lamps. Light Eng 16:32–38Google Scholar
  18. 18.
    Guidance P (2004) Using of bactericidal UV radiation for air decontamination in a housing, Ministry of Public Health of Russian Federation. 28 p, 3.5.1904–04Google Scholar
  19. 19.
    Zhdanova OS, Sosnin EA, Krasnoszhenov EP, Tarasenko VF, Avdeev SM, Gritsuta AV (2010) Hospital infections agents sensitivity to XeBr excilamp irradiation. J Infect Pathol 17:62–64Google Scholar
  20. 20.
    Gratia A (1936) Des relations numericues entre bacteries lysogenes at particules de bacteriophage. Ann Inst Pasteur 57:652–694Google Scholar
  21. 21.
    Krutmann JJ (1998) Therapeutic photoimmunology: photoimmunological mechanisms in photo(chemo)therapy. Photochem Photobiol B. 44:159–164Google Scholar
  22. 22.
    Hönigsmann H (2001) Phototherapy for psoriasis. Clin Dermatol 26:343–350CrossRefGoogle Scholar
  23. 23.
    Parrish JA, Jaencke KF (1981) Action spectrum for phototherapy of psoriasis. J Invest Dermatol 76:359–362CrossRefGoogle Scholar
  24. 24.
    Oppenländer T (1994) Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment. Eur Photochem Assoc Newslett 50:2–8Google Scholar
  25. 25.
    Dmitruck VS, Sosnin EA, Obgol’tz IA (2006) The first attempt of XeCl-excilamp application in complex psoriasis curing. Proc SPIE 6263:316–321Google Scholar
  26. 26.
    Sosnin EA, Erofeev MV, Tarasenko VF, Skakun VS, Shitz DV, Mersey T, Meilhac L (2006) Radiation source. Patent RU2 271590. Priority date 15 Mar 2004Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Victor F. Tarasenko
    • 1
  • E. A. Sosnin
    • 1
  • O. S. Zhdanova
    • 2
  • E. P. Krasnozhenov
    • 2
  1. 1.Laboratory of Optical RadiationHigh Current Electronics InstituteTomskRussian Federation
  2. 2.Microbiology and Virology, Sub-department of Siberian State Medical UniversityTomskRussian Federation

Personalised recommendations