Advertisement

Inactivation of Candida Strains in Planktonic and Biofilm Forms Using a Direct Current, Atmospheric-Pressure Cold Plasma Micro-Jet

  • Wei-Dong Zhu
  • Peng Sun
  • Yi Sun
  • Shuang Yu
  • Haiyan Wu
  • Wei Liu
  • Jue Zhang
  • Jing Fang
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

A direct-current, atmospheric-pressure, He/O2 (2%) cold plasma ­microjet is applied to Candida species (C. glabrata, C. albicansand C. krusei). Effective inactivation is achieved both in air and in water within 5 min of plasma treatment. Same plasma treatment also successfully inactivated candida biofilms on Petri dish. The inactivation was verified by cell viability test (XTT assay). Severe deformation of Candida biofilms after the plasma treatment was observed through scanning electron microscope (SEM). Optical emission spectroscopy shows strong atomic oxygen emission at 777 nm. Hydroxyl radical (•OH), superoxide anion radical (•O2-) and singlet molecular oxygen (1O2) are detected by electron spin resonance (ESR) spectroscopy. The sessile minimal inhibitory concentrations (SMICs) of fluconazole, amphotericin B, and caspofungin against the Candida spp. biofilms were decreased to 2-6 fold dilutions in plasma microjet treated group in comparison with the controls. This novel approach may become a new tool for the treatment of clinical dermatosis

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Plasma Treatment Candida Species Spin Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Work supported in part by Bioelectrics Inc. (U.S.A.), the Peking University Biomed-X Foundation and China International Science and Technology Cooperation (2008KR1330 – “Cold Plasma induced biological effect and its clinical application studies”)

References

  1. 1.
    Concia E, Azzini AM, Conti M (2009) Epidemiology, incidence and risk factors for invasive candidiasis in high-risk patients. Drugs 69:5–14CrossRefGoogle Scholar
  2. 2.
    Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16:445–452CrossRefGoogle Scholar
  3. 3.
    Rowen JL (2003) Mucocutaneous candidiasis. Semin Perinatol 27:406–413CrossRefGoogle Scholar
  4. 4.
    Hasan F, Xess I, Wang X, Jain N, Fries BC (2009) Biofilm formation in clinical Candida ­isolates and its association with virulence. Microbes Infect 11:753–761CrossRefGoogle Scholar
  5. 5.
    D’Enfert C (2006) Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7:465–470CrossRefGoogle Scholar
  6. 6.
    Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW (2004) Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:53–59CrossRefGoogle Scholar
  7. 7.
    Bryers JD, Ratner BD (2004) Bioinspired implant materials befuddle bacteria. ASM News 5:232–237Google Scholar
  8. 8.
    Ramage G, Wickes BL, Lopez-Ribot JL (2001) Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab 20:42–44Google Scholar
  9. 9.
    Mukherjee PK, Chandra J (2004) Candida biofilm resistance. Drug Resist Updat 7:301–309CrossRefGoogle Scholar
  10. 10.
    Cauda R (2009) Candidaemia in patients with an inserted medical device. Drugs 69:33–38CrossRefGoogle Scholar
  11. 11.
    Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 4:1409–1415ADSCrossRefGoogle Scholar
  12. 12.
    Fridman G, Peddinghaus M, Ayan H et al (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:425–442CrossRefGoogle Scholar
  13. 13.
    Pan J, Sun P, Tian Y, Bai N, Zhou H, Wu H, Zhu W, Zhang J, Becker KH, Fang J (2010) A novel method of tooth whitening using cold plasma micro-jet driven by direct current and atmospheric-pressure air. IEEE Trans Plasma Sci 38:3143–3151ADSCrossRefGoogle Scholar
  14. 14.
    Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel ALP, Pouvesle J-M (2010) Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Processes Polym 7:3–4CrossRefGoogle Scholar
  15. 15.
    Nosenko T, Shimizu T, Morfill GE (2009) Designing plasmas for chronic wound disinfection. New J Phys 11:5013–5032CrossRefGoogle Scholar
  16. 16.
    Abramzon N, Joaquin JC, Bray J, Brelles-Mariño G (2006) Biofilm destruction by RF high-pressure cold plasma jet. IEEE Trans Plasma Sci 34:1304–1309ADSCrossRefGoogle Scholar
  17. 17.
    Vleugels M, Shama G, Deng XT, Greenacre E, Brocklehurst T, Kong MG (2005) Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans Plasma Sci 33:824–828ADSCrossRefGoogle Scholar
  18. 18.
    Heinlin J, Isbary G, Stolz W, Morfill GE, Landthaler M, Shimizu T, Steffes B, Nosenko T, Zimmermann JL, Karrer S (2011) Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol 25:1–11CrossRefGoogle Scholar
  19. 19.
    Rupf S, Lehmann A, Hannig M, Schäfer B, Schubert A, Feldmann U, Schindler A (2010) Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol 59:206–212CrossRefGoogle Scholar
  20. 20.
    Morfill GE, Shimizu T, Steffes B, Schmidt H (2009) Nosocomial infections – a new approach towards preventive medicine using plasmas. New J Phys 11:115019CrossRefGoogle Scholar
  21. 21.
    Feng H, Sun P, Chai Y, Tong G, Zhang J, Zhu W, Fang J (2009) The interaction of a direct-current cold atmospheric-pressure air plasma with bacteria. IEEE Trans Plasma Sci 37:121–127ADSCrossRefGoogle Scholar
  22. 22.
    Liu F, Sun P, Bai N, Tian Y, Zhou H, Wei S, Zhou Y, Zhang J, Zhu W, Becker K, Fang J (2010) Inactivation of bacteria in an aqueous environment by a direct-current, cold-atmospheric-­pressure air plasma microjet. Plasma Processes Polym 7:231–236CrossRefGoogle Scholar
  23. 23.
    Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, Lopez-Ribot JL (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3:1494–1500CrossRefGoogle Scholar
  24. 24.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112CrossRefGoogle Scholar
  25. 25.
    Ikawa S, Kitano K, Hamaguchi S (2009) Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Processes Polym 7:33–42CrossRefGoogle Scholar
  26. 26.
    Sun P, Wu H, Bai N, Zhou H, Wang R, Feng H, Zhu W, Zhang J, Fang J (2011) Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Processes Polym, Online: DOI: 10.1002/ppap.201100041Google Scholar
  27. 27.
    Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wei-Dong Zhu
    • 1
  • Peng Sun
    • 2
  • Yi Sun
    • 3
  • Shuang Yu
    • 2
  • Haiyan Wu
    • 2
  • Wei Liu
    • 3
  • Jue Zhang
    • 2
  • Jing Fang
    • 2
  1. 1.Department of Applied Science and TechnologySaint Peter’s CollegeJersey CityUSA
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  3. 3.Department of Dermatology and VenereologyPeking University 1st HospitalBeijingChina

Personalised recommendations