Medical Plasma in Dentistry: A Future Therapy for Peri-implantitis

  • Ina Koban
  • Lukasz Jablonowski
  • Axel Kramer
  • Klaus-Dieter Weltmann
  • Thomas Kocher
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Biofilm formation plays a major role in the pathogenesis of many oral diseases especially in peri-implantits. To evaluate the anti-biofilm effect of different plasma devices and processes we used different dental biofilm models: Candida albicans, Streptococcus mutans, Streptococcus sanguinis, aerobe multispecies human saliva and anaerobe plaque biofilms. After 10 min treatment we reduced the biofilms by 5 log10 steps using dielectric barrier discharge (DBD) plasma. Chlorhexidine is the gold standard antiseptic which achieved in the same time only a 1.5 log10 reduction. All plasma devices (DBD or plasma jets) damaged the membrane of the microorganisms but only etching plasma sources can remove the biofilm as shown in CLSM micrographs. It is possible to improve the plasma process using antiseptics like octenidine. This combination significantly reduced CFU values after 1 min plasma treatment compared to the plasma control. Beside the anti-biofilm effect an additional effect of plasma is the contact angle reduction of different titanium implant surfaces from 90° to super-hydrophilic (<5°). This can improve the implant healing process. Thus in the future, plasma could be an interesting treatment option in dentistry, especially in treatment of peri-implantits.

Keywords

Dielectric Barrier Discharge High Voltage Electrode Titanium Disc Confocal Laser Scanning Microscope Micrographs Periodontal Wound Healing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was realized within the framework of the multi-disciplinary research cooperation “Campus PlasmaMed”, particularly within the project “PlasmaDent”. The authors acknowledge that this work was supported by a grant funded by the German Ministry of Education and Research (BMBF, grant no, 13N9779). All titanium discs were kindly provided by Straumann (Institut Straumann AG, Basel, Switzerland).

We thank Tina Dornquast, Claudia Lehnert and Hartmut Fischer for their excellent technical assistance, Rüdiger Titze for his skilful support in operating the plasma equipment and Karsten Schröder for critical discussions as well as Christoph Schmidt and Sander Bekeschus for critical reading of the manuscript.

References

  1. 1.
    Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B Biol 79:159–170CrossRefGoogle Scholar
  2. 2.
    Roos-Jansaker AM, Lindahl C, Renvert H, Renvert S (2006) Nine- to fourteen-year follow-up of implant treatment. Part 1: implant loss and associations to various factors. J Clin Periodontol 33:283–289CrossRefGoogle Scholar
  3. 3.
    Roos-Jansaker AM, Renvert S, Egelberg J (2003) Treatment of peri-implant infections: a literature review. J Clin Periodontol 30:467–485CrossRefGoogle Scholar
  4. 4.
    Klinge B, Hultin M, Berglundh T (2005) Peri-implantitis. Dent Clin North Am 49:661–676, vii–viiiCrossRefGoogle Scholar
  5. 5.
    Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 76:323–334Google Scholar
  6. 6.
    Schwarz F, Sculean A, Wieland M, Horn N, Nuesry E, Bube C, Becker J (2007) Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study. Mund Kiefer Gesichtschir 11:333–338CrossRefGoogle Scholar
  7. 7.
    Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74A:49–58CrossRefGoogle Scholar
  8. 8.
    Däschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Jünger M (2010) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Processes Polym 7:224–230CrossRefGoogle Scholar
  9. 9.
    Koban I, Hübner NO, Matthes R, Welk A, Kindel E, Weltmann KD, Kramer A, Kocher T (2009) Antiseptic efficacy of selected agents and tissue tolerable plasma (TTP) on C. albicans biofilms – has the biofilm maturity influence on it? GMS Krankenhaushyg Interdiszip 4:Doc09Google Scholar
  10. 10.
    Matthes R, Bender C, Hübner NO, Müller G, Kohl K, Mentz J, Koban I, Kindel E, Kocher T, Weltmann KD, Lademann J, Kramer A (2009) Influencing of the penetration of Pseudomonas aeruginosa into a 3-D epidermis model and the inactivation with tissue tolerable plasma. GMS Krankenhaushyg Interdiszip 4:Doc08Google Scholar
  11. 11.
    Koban I, Matthes R, Hübner NO, Welk A, Meisel P, Holtfreter B, Sietmann R, Kindel E, Weltmann KD, Kramer A, Kocher T (2010) Treatment of Candida albicans biofilms with low temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys 12:073039CrossRefGoogle Scholar
  12. 12.
    Foest R, Kindel E, Ohl A, Stieber M, Weltmann KD (2005) Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys Control Fusion 47:B525–B536CrossRefGoogle Scholar
  13. 13.
    Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (appjs). J Phys D Appl Phys 41:194008ADSCrossRefGoogle Scholar
  14. 14.
    Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82:1223–1237CrossRefGoogle Scholar
  15. 15.
    Koban I, Holtfreter B, Huebner NO, Matthes R, Sietmann R, Kindel E, Weltmann KD, Welk A, Kramer A, Kocher T (2011) Antimicrobial efficacy of nonthermal plasma in comparison to chlorhexidine against dental biofilms in titanium discs in vitro – proof of principle experiment. J Clin Periodontol 38:956–965CrossRefGoogle Scholar
  16. 16.
    Fricke K, Steffen H, von Woedtke T, Schröder K, Weltmann KD (2011) High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Processes Polym 8:51–58CrossRefGoogle Scholar
  17. 17.
    Bussiahn R, Brandenburg R, Gerling T, Kindel E, Lange H, Lembke N, Weltmann KD, von Woedtke T, Kocher T (2010) The hairline plasma: an intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications. Appl Phys Lett 96:143701ADSCrossRefGoogle Scholar
  18. 18.
    Halfmann H, Denis B, Bibinov N, Wunderlich J, Awakowicz P (2007) Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J Phys D Appl Phys 40:5907–5911ADSCrossRefGoogle Scholar
  19. 19.
    Hauser-Gerspach I, de Freitas PS, Dan Daniels AU, Meyer J (2008) Adhesion of Streptococcus sanguinis to glass surfaces measured by isothermal microcalorimetry (IMC). J Biomed Mater Res B Appl Biomater 85:42–49Google Scholar
  20. 20.
    Schwarz F, Sager M, Kadelka I, Ferrari D, Becker J (2010) Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs. J Clin Periodontol 37:466–473CrossRefGoogle Scholar
  21. 21.
    Kramer A, Assadian O, Below H, Bender C, Hammann A, Hartmann B, Hübner NO, Koban I, Kocher T, Lademann J, Matthes R, Weltmann KD (2010) Perspektiven der Plasmamedizin. Vakuum in Forschung und Praxis 22:33–38CrossRefGoogle Scholar
  22. 22.
    Hammann A, Hübner NO, Bender C, Ekkernkamp A, Hartmann B, Hinz P, Kindel E, Koban I, Koch S, Kohlmann T, Lademann J, Matthes R, Müller G, Titze R, Weltmann KD, Kramer A (2010) Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol 23:328–332CrossRefGoogle Scholar
  23. 23.
    Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, Weltmann KD, Hartmann B, Ottomann C, Fluhr JW, Hinz P, Hübner G, Lademann O (2009) Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt 14(5)Google Scholar
  24. 24.
    Bender C, Matthes R, Kindel E, Kramer A, Lademann J, Weltmann KD, Eisenbeiß W, Hübner NO (2010) The irritation potential of nonthermal atmospheric pressure plasma in the het-cam. Plasma Processes Polym 7:318–326CrossRefGoogle Scholar
  25. 25.
    Stoffels E (2007) “Tissue processing” with atmospheric plasmas. Contrib Plasma Phys 47:40–48ADSCrossRefGoogle Scholar
  26. 26.
    Kramer A, Hübner N, Assadian O, Below H, Bender C, Benkhai H, Bröker B, Ekkernkamp A, Eisenbeiß W, Hammann A, Hartmann B, Heidecke CD, Hinz P, Koban I, Koch S, Kocher T, Lademann J, Lademann O, Lerch M, Maier S, Matthes R, Müller G, Partecke I, Rändler C, Weltmann KD, Zygmunt M (2009) Chancen und Perspektiven der Plasmamedizin durch Anwendung von gewebekompatiblen Atmosphärendruckplasmen (tissue tolerable plasmas, ttp). GMS Krankenhaushyg Interdiszip 4:Doc10Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ina Koban
    • 1
  • Lukasz Jablonowski
    • 4
  • Axel Kramer
    • 2
  • Klaus-Dieter Weltmann
    • 3
  • Thomas Kocher
    • 4
  1. 1.Unit of Periodontology, Policlinics for Restorative Dentistry, Periodontology and EndodontologyErnst-Moritz-Anrdt UniversityGreifswaldGermany
  2. 2.Institute for Hygiene and Environmental MedicineErnst-Moritz-Arndt University GreifswaldGreifswaldGermany
  3. 3.Leibniz Institute for Plasma Science and Technology e. V. (INP Greifswald)GreifswaldGermany
  4. 4.Unit of Periodontology, Dental SchoolErnst-Moritz-Arndt University GreifswaldGreifswaldGermany

Personalised recommendations