Advertisement

Inactivation of Microorganisms in Model Biofilms by an Atmospheric Pressure Pulsed Non-thermal Plasma

  • Yuri Akishev
  • N. Trushkin
  • M. Grushin
  • A. Petryakov
  • V. Karal’nik
  • E. Kobzev
  • V. Kholodenko
  • V. Chugunov
  • G. Kireev
  • Yu. Rakitsky
  • I. Irkhina
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Non-thermal plasma jet formed by self-running pulsed-periodical high-current spark generator (PPSG) was used for atmospheric pressure inactivation of microorganisms including biofilms. A distinctive feature of the PPSG is a formation of transient hot plasma clouds (plasma bullets) periodically flying out to the target. We experimented with model biofilms of E. coli and Bacillus subtilis monocultures which were grown on agar and surfaces of steel and polypropylene coupons. High efficiency of plasma inactivation was demonstrated. This effect is associated primarily with an interaction of transient hot plasma clouds with biofilms. Besides complete or partial degradation of the cell membrane, weakening of the cell wall of E.coli culture by active plasma was found.

Keywords

Active Plasma Complete Breaking Plasma Bullet Cell Wall Strength Active Plasma Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lengeler J, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Thieme, StuttgartGoogle Scholar
  2. 2.
    Jigletsova SK, Rodin VB, Kobelev VS, Akimova NA, Alexandrova NV, Rasulova GE, Mironova RI, Noskova VP, Kholodenko VP (2000) Increased environmental safety of biocides used to control microbial corrosion. Appl Biochem Microbiol 36:694–700Google Scholar
  3. 3.
    Videla HA (1996) Manual of biocorrosion. Lewis publishers, LondonGoogle Scholar
  4. 4.
    Ehlbeck J, Schnabel U, Polak M, Winter J, Woedtke T, Brandenburg R, Hagen T, Weltmann K-D (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D: Appl Phys 44:013002 (18 pp)ADSCrossRefGoogle Scholar
  5. 5.
    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 9:115020 (26 pp)CrossRefGoogle Scholar
  6. 6.
    Sosnin EA, Lavrent’eva LV, Masterova YaV (2004) Capacitive discharge sterilizing lamp in iodine vapor. Lett JTF 30:89–94Google Scholar
  7. 7.
    Anpilov A, Barkhudarov E, Bark Yu (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D: Appl Phys 34:993–999ADSCrossRefGoogle Scholar
  8. 8.
    Mesyats GA, Korolev YuD (1986) High-pressure volume discharges in gas-lasers. Uspekhi Fizicheskikh Nauk 148:101–122CrossRefGoogle Scholar
  9. 9.
    Klimenko KA, Korolev YuD (1990) Pulse volume discharge in short interelectrode intervals as a source of accelerated electrons. Zhurnal Tekhnicheskoi Fiziki 60:138–142Google Scholar
  10. 10.
    Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28:41–50ADSCrossRefGoogle Scholar
  11. 11.
    Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 30:1409–1415ADSCrossRefGoogle Scholar
  12. 12.
    Akishev Yu, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) Non-equilibrium constricted DC glow discharge in N2 flow at atmospheric pressure: stable and unstable regimes. J Phys D: Appl Phys 43:075202 (11 pp)ADSCrossRefGoogle Scholar
  13. 13.
    Akishev Yu, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) On basic processes sustaining constricted glow discharge in longitudinal N2 flow at atmospheric pressure. J Phys D: Appl Phys 43:215202 (18 pp)ADSCrossRefGoogle Scholar
  14. 14.
    Machala Z, Chladekova L, Pelach M (2010) Plasma agents in bio-decontamination by dc ­discharges in atmospheric air. J Phys D: Appl Phys 43:222001 (7 pp)ADSCrossRefGoogle Scholar
  15. 15.
    Yamabe C, Miichi T, Ihara S (2000) Proceedings of 13th international conference GD-2000, 2.Glasgow, p 684Google Scholar
  16. 16.
    Moreau S, Moisan M, Tabrizian M, Barbeau J, Pelletier J, Ricard A (2000) Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: influence of the operating conditions. J Appl Phys 88:1166–1174ADSCrossRefGoogle Scholar
  17. 17.
    Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia L’H (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21CrossRefGoogle Scholar
  18. 18.
    Akishev Yu, Grushin M, Karalnik V, Petryakov A, Trushkin N, Kholodenko V, Chugunov V, Irkhina I, Kobzev E, Zhirkova N, Kireev G (2008) Atmospheric pressure non-thermal plasma sterilization of microorganisms in liquids and on the surfaces. Pure Appl Chem 80:1953CrossRefGoogle Scholar
  19. 19.
    Cybik BZ, Wilkerson JT, Grossman KR (2004) Performance characteristics of the spark-jet flow control actuator. AIAA meeting paper, Portland, USA, June 2004, pp 2004–2131Google Scholar
  20. 20.
    Dobrynin D, Arjunan K, Fridman A, Friedman G, Morss Clyne A (2011) Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma. J Phys D: Appl Phys 44:075201 (10 pp)ADSCrossRefGoogle Scholar
  21. 21.
    Akishev Yu, Aponin G, Karalnik V, Monich A, Trushkin N (2004) Spatiotemporal evolution of the current and the integral and spectral emission characteristics of a negative corona in nitrogen during its transformation into a spark. Plasma Phys Rep 30:971–982ADSCrossRefGoogle Scholar
  22. 22.
    Nikolaev YuA, Plakunov VK (2007) Biofilm – “City of Microbes” or an analogue of multicellular organisms? Microbiology (Translated from Mikrobiologiya) 76:149–163Google Scholar
  23. 23.
    Kholodenko VP, Chugunov VA, Kobzev EN, Zhirkova NA., Irkhina IA., Tedikov VM, Martovetskaya II, Kireev GV, Dyatlov IA (2008) Study of plasma-chemical method to inactivate microorganisms of different groups. In: Book of abstracts, 11th annual biological conference of the European biosafety association, Florence, Italy, 3–4 April 2008, p 71Google Scholar
  24. 24.
    Akishev Yu, Grushin M, Karalnik V, Monich A, Pankin M, Trushkin N, Kholodenko V, Chugunov V, Zhirkova N, Irkhina I, Kobzev E (2006) Generation of non-equilibrium plasma in heterophase atmospheric pressure gas-liquid media and demonstration of its sterilization ability. Plasma Phys Rep 32:1052–1061ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yuri Akishev
    • 1
  • N. Trushkin
    • 1
  • M. Grushin
    • 1
  • A. Petryakov
    • 1
  • V. Karal’nik
    • 1
  • E. Kobzev
    • 2
  • V. Kholodenko
    • 2
  • V. Chugunov
    • 2
  • G. Kireev
    • 2
  • Yu. Rakitsky
    • 2
  • I. Irkhina
    • 2
  1. 1.Low Temperature Plasma DepartmentSRC RF TRINITITroitskRussia
  2. 2.SRC RF for Applied Microbiology and BiotechnologyObolenskRussia

Personalised recommendations