Atmospheric Pressure Plasmas for Decontamination of Complex Medical Devices

  • Klaus-Dieter Weltmann
  • Jörn Winter
  • Martin Polak
  • Jörg Ehlbeck
  • Thomas von Woedtke
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Atmospheric pressure plasma sources produce a multiplicity of different antimicrobial agents and are applicable to even complicated geometries as well as to heat sensitive materials. Thus, atmospheric pressure plasmas have a huge potential for the decontamination of even complex medical devices like central venous catheters and endoscopes. In this paper we present practicable realizations of atmospheric pressure plasma sources, namely plasma jet, dielectric barrier discharge and microwave driven discharge that are able to penetrate fine lumen or are adaptable to difficult geometries. Furthermore, the antimicrobial efficacy of these sources is given for one example setup in each case.


Medical Device Dielectric Barrier Discharge Metal Tube Antimicrobial Efficacy Sterilization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was founded by the German Federal Ministry of Education and Research (BMBF), project name: “PLASMOSE – Plasmagestützte Oberflächenmodifizierung ­mittels modularer selektiver Plasmaquelle”, contract number 13N8666 and: “ENDOPLAS – Inaktivierende Mikroplasmen zur Sterilisierung im Lumen von medizinischen Instrumenten”, contract number 13N9320. The authors thankfully acknowledge U. Schnabel and L. Kantz for microbiological assistance, Dr. M. Stieber and Dr. R. Brandenburg for fruitful discussions.


  1. 1.
    Pfug IJ (1990) Microbiology and engineering of sterilization processes, 7th edn. Environmental Sterilization Laboratory, MinniapolisGoogle Scholar
  2. 2.
    Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke Th, Brandenburg R, von dem Hagen T, Weltmann K-D (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:013002ADSCrossRefGoogle Scholar
  3. 3.
    Laroussi M (2005) Low-temperature plasma-based sterilization: overview and state of the art. Plasma Processes Polym 2:391–400CrossRefGoogle Scholar
  4. 4.
    Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269ADSCrossRefGoogle Scholar
  5. 5.
    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020CrossRefGoogle Scholar
  6. 6.
    Schuetze A, Yeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694ADSCrossRefGoogle Scholar
  7. 7.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure ­plasmas: a review. Spectrochim Acta B 61:2–30ADSCrossRefGoogle Scholar
  8. 8.
    Ehlbeck J, Brandenburg R, von Woedtke T, Krohmann U, Stieber M, Weltmann K-D (2008) PLASMOSE – antimicrobial effects of modular atmospheric plasma sources. GMS Kranken­haushyg Interdiszip 3(1):2–12Google Scholar
  9. 9.
    von Woedtke Th, Kramer A, Weltmann K-D (2008) Plasma sterilization: what are the conditions to meet this claim? Plasma Processes Polym 5:534–539CrossRefGoogle Scholar
  10. 10.
    Brandenburg R, Ehlbeck J, Stieber M, von Woedtke Th, Zeymer J, Schlüter O, Weltmann K-D (2007) Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet. Contrib Plasma Phys 47:72–79ADSCrossRefGoogle Scholar
  11. 11.
    Weltmann K-D, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J Phys D Appl Phys 41:194008ADSCrossRefGoogle Scholar
  12. 12.
    Schnabel U, Maucher T, Köhnlein J, Volkwein W, Niquet R, Trick I, Stieber M, Müller M, Werner H-P, Ehlbeck J, Oehr C, Weltmann K-D (2010) Multicentre trials for decontamination of fine-lumen PTFE tubes loaded with bacterial endospores by low and atmospheric pressure. Plasma Processes Polym, acceptedGoogle Scholar
  13. 13.
    Maucher T, Schnabel U, Volkwein W, Köhnlein J, Winter J, Weltmann K-D, Trick I, Oehr C (2011) Assembly of standardized test specimen for microbial quantification of plasma sterilization processes of fine PTFE tubes as used in thermo sensitive medical devices like flexible endoscopes. Plasma Processes Polym 8:200–207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Klaus-Dieter Weltmann
    • 1
  • Jörn Winter
    • 1
  • Martin Polak
    • 1
  • Jörg Ehlbeck
    • 1
  • Thomas von Woedtke
    • 1
  1. 1.Leibniz Institute for Plasma Science and Technology e. V. (INP Greifswald)GreifswaldGermany

Personalised recommendations