Development: Pharmacokinetics—Systems Biology in Health and Disease III

  • Aleš Prokop
  • Seth Michelson
Part of the SpringerBriefs in Pharmaceutical Science & Drug Development book series (BRIEFSPSDD, volume 2)


In silico PKPD/ADMET and biochemical-mechanistic methods will become a standard approach in the coming few years via the employment of BI and SB tools at the multiscale whole-body level. So far, the overall impact of toxicity markers on preclinical safety testing has been modest. The greatest benefit of PBPK models is they may allow for individualized health care.


PBPK Modeling Adaptive Design Accelerator Mass Spectrometry Toxicological Endpoint Toxicity Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lappin G, Garner RC (2008) The utility of microdosing over the past 5 years. Expert Opin Drug Metab Toxicol 4(12):1499–1506PubMedCrossRefGoogle Scholar
  2. 2.
    Buchan P (2007) Smarter candidate selectionutilizing microdosing in exploratory clinical studies. Ernst Schering Res Found Workshop (59):7–27Google Scholar
  3. 3.
    Stumpf WE (2006) The dose makes the medicine. Drug Dis Today 11(11-12):550–555Google Scholar
  4. 4.
    Shen LZ, Coffey T, Deng W (2008) A Bayesian approach to utilizing prior data in new drug development. J Biopharm Stat 18(2):227–243PubMedCrossRefGoogle Scholar
  5. 5.
    Chow SC, Chang M (2008) Adaptive design methods in clinical trials—a review. Orphanet J Rare Dis 2(3):11CrossRefGoogle Scholar
  6. 6.
    Simon R (2008) The use of genomics in clinical trial design. Clin Cancer Res 14(19):5984–5993PubMedCrossRefGoogle Scholar
  7. 7.
    Hozo I, Djulbegovic B, Clark O, Lyman GH (2005) Use of re-randomized data in meta-analysis. BMC Medical Res Methodol 5:17CrossRefGoogle Scholar
  8. 8.
    Freidlin B, Simon R (2005) Evaluation of randomized discontinuation design. JCO 23:5094–5098CrossRefGoogle Scholar
  9. 9.
    Halla DB, Meierb U, Dienerc H-C (2005) A group sequential adaptive treatment assignment design for proof of concept and dose selection in headache trials. Contemp Clin Trials 26:349–364CrossRefGoogle Scholar
  10. 10.
    Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5(9):730–739 Erratum in: Nat Rev Drug Discov (2007) 6(3):249PubMedCrossRefGoogle Scholar
  11. 11.
    Ohlson S (2008) Designing transient binding drugs: a new concept for drug discovery. Drug Discov Today 13(9–10):433–439PubMedCrossRefGoogle Scholar
  12. 12.
    Kuhlmann J, Wensing G (2006) The applications of biomarkers in early clinical drug development to improve decision-making processes. Curr Clin Pharmacol 1(2):185–191PubMedCrossRefGoogle Scholar
  13. 13.
    Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G (2005) Mechanism-based pharmacokinetic–pharmacodynamic modeling—A new classification of biomarkers. Pharm Res 22( 9):1432–1437Google Scholar
  14. 14.
    Guillouzo A, Guguen-Guillouzo C (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 4(10):1279–1294PubMedCrossRefGoogle Scholar
  15. 15.
    Stevens JL (2006) Future of toxicologymechanisms of toxicity and drug safety: where do we go from here? Chem Res Toxicol 19(11):1393–1401PubMedCrossRefGoogle Scholar
  16. 16.
    Mohan CG, Gandhi T, Garg D, Shinde R (2007) Computer-assisted methods in chemical toxicity prediction. Mini Rev Med Chem 7(5):499–507PubMedCrossRefGoogle Scholar
  17. 17.
    Wierling C, Herwig R, Lehrach H (2007) Resources, standards and tools for systems biology. Brief Funct Genomic Proteomic 6(3):240–251PubMedCrossRefGoogle Scholar
  18. 18.
    Muster W, Breidenbach A, Fischer H, Kirchner S, Müller L, Pähler A (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310PubMedCrossRefGoogle Scholar
  19. 19.
    Judson R, Elloumi F, Setzer RW, Li Z, Shah I (2008) A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinformatics 9:241PubMedCrossRefGoogle Scholar
  20. 20.
    Jenwitheesuk E, Horst JA, Rivas KL, Van Voorhis WC, Samudrala R (2008) Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 29(2):62–71PubMedCrossRefGoogle Scholar
  21. 21.
    Schmitt W, Willmann S (2004) Physiology-based pharmacokinetic modeling: ready to be used. Drug Discov Today Technol 1(4):449–456CrossRefGoogle Scholar
  22. 22.
    Edginton AN, Theil FP, Schmitt W, Willmann S (2008) Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol 4(9):1143–1152PubMedCrossRefGoogle Scholar
  23. 23.
    Barton HA (2005) Computational pharmacokinetics during developmental windows of susceptibility. J Toxicol Environ Health A 68(11–12):889–900PubMedCrossRefGoogle Scholar
  24. 24.
    Nestorov I (2007) Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol 3(2):235–249PubMedCrossRefGoogle Scholar
  25. 25.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.NanoDelivery International, s.r.o.Břeclav-PoštornáCzech Republic
  3. 3.Genomic Health IncRedwood CityUSA

Personalised recommendations