Integrative Systems Biology II—Molecular Biology: Phase 2 Lead Discovery and In Silico Screening

  • Aleš Prokop
  • Seth Michelson
Part of the SpringerBriefs in Pharmaceutical Science & Drug Development book series (BRIEFSPSDD, volume 2)


Many different OMICs/HTS techniques now allow huge amounts of molecular signatures to be collected and then analysed further by system tools. Among them, ChIP-on-chip is used to investigate interactions between proteins and DNA in vivo. Chemogenomics, morphogenics and synthetic biology are only in the early stages of development, but may contribute to target identification. A key SB tool, the reconstruction of biological networks, represents an emerging field, undergoing explosive expansion, and will likely enable efficient mapping of gene onto function.


Synthetic Biology High Throughput Screening Flux Balance Analysis Network Reconstruction Ontology Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen X, Jorgenson E, Cheung ST (2009) New tools for functional genomic analysis. Drug Discov Today 14(15–16):754–760PubMedCrossRefGoogle Scholar
  2. 2.
    Ling XB (2008) High throughput screening informatics. Combinat Chem High Throughput Screen 11(3):249–257CrossRefGoogle Scholar
  3. 3.
    Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6(17):4716–4723PubMedCrossRefGoogle Scholar
  4. 4.
    Petricoin EF, Belluco C, Araujo RP, Liotta LA (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6(12):961–967PubMedCrossRefGoogle Scholar
  5. 5.
    Wang YK, Ma Z, Quinn DF, Fu EW (2001) Inverse 18O labeling mass spectrometry for the rapid identification of marker/target proteins. Anal Chem 73(15):3742–3750PubMedCrossRefGoogle Scholar
  6. 6.
    Maréchal E (2008) Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence. Comb Chem High Throughput Screen 11(8):583–586PubMedCrossRefGoogle Scholar
  7. 7.
    Birault V, Harris CJ, Le J, Lipkin M, Nerella R, Stevens A (2006) Bringing kinases into focus: efficient drug design through the use of chemogenomic toolkits. Curr Med Chem 13(15):1735–1748PubMedCrossRefGoogle Scholar
  8. 8.
    Zheng XF, Chan TF (2002) Chemical genomics: a systematic approach in biological research and drug discovery. Curr Issues Mol Biol 4(2):33–43PubMedGoogle Scholar
  9. 9.
    Li LS, Morales JC, Hwang A, Wagner MW, Boothman DA (2008) DNA mismatch repair-dependent activation of c-Abl/p73alpha/GADD45alpha-mediated apoptosis. J Biol Chem 283(31):21394–21403PubMedCrossRefGoogle Scholar
  10. 10.
    Nicolaides NC, Ebel W, Kline B, Chao Q, Routhier E, Sass PM, Grasso L (2005) Morphogenics as a tool for target discovery and drug development. Ann N Y Acad Sci 1059:86–96PubMedCrossRefGoogle Scholar
  11. 11.
    Vaish M (2007) Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Mol Cancer 2(6):26CrossRefGoogle Scholar
  12. 12.
    Larson SM, Godley LA (2010) Getting to the root of the stem cell in mutated chronic myeloid leukemia. Leuk Lymphoma 51(12):2147–2148PubMedCrossRefGoogle Scholar
  13. 13.
    Jun SH, Kim TG, Ban C (2006) DNA mismatch repair system. Classical and fresh roles. FEBS J 273(8):1609–1619PubMedCrossRefGoogle Scholar
  14. 14.
    Nicolaides NC, Ebel W, Kline B, Chao Q, Routhier E, Sass PM, Grasso L (2005) Morphogenics as a tool for target discovery and drug development. Ann N Y Acad Sci 1059:86–96PubMedCrossRefGoogle Scholar
  15. 15.
    Werner E (2003) In silico multicellular systems biology and minimal genomes. Drug Discov Today 8(24):1121–1127PubMedCrossRefGoogle Scholar
  16. 16.
    Santi DV (2006) Redesign, synthesis and functional expression of the 6-deoxyerythronolide B polyketide synthase gene cluster. J Ind Microbiol Biotechnol 33(1):22–28PubMedCrossRefGoogle Scholar
  17. 17.
    Menzella HG, Reisinger SJ, Welch M, Kealey JT, Kennedy J, Reid R, Tran CQ, Metaferia BB, Chen L, Baker HL, Huang XY, Bewley CA (2007) Synthetic macrolides that inhibit breast cancer cell migration in vitro. J Am Chem Soc 129(9):2434–2435CrossRefGoogle Scholar
  18. 18.
    Zotchev SB, Stepanchikova AV, Sergeyko AP, Sobolev BN, Filimonov DA, Poroikov VV (2006) Rational design of macrolides generated through in silico manipulation of polyketide synthases. J Med Chem 49(6):2077–2087PubMedCrossRefGoogle Scholar
  19. 19.
    Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45PubMedCrossRefGoogle Scholar
  20. 20.
    Kaznessis YN (2007) Models for synthetic biology. BMC Syst Biol 1:47PubMedCrossRefGoogle Scholar
  21. 21.
    Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20:479–485PubMedCrossRefGoogle Scholar
  22. 22.
    Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111PubMedCrossRefGoogle Scholar
  23. 23.
    Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143PubMedGoogle Scholar
  24. 24.
    Francke C, Siezen RJ, Teusink B (2005) Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13(11):550–558PubMedCrossRefGoogle Scholar
  25. 25.
    Alon N, Dao P, Hajirasouliha I, Hormozdiari F, Sahinalp SC (2008) Biomolecular network motif counting and discovery by color coding. Bioinformatics 24(13):i241–i249PubMedCrossRefGoogle Scholar
  26. 26.
    Christensen C, Thakar J, Albert R (2007) Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. IET Syst Biol 1(2):61–77PubMedCrossRefGoogle Scholar
  27. 27.
    Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 2(7):482CrossRefGoogle Scholar
  28. 28.
    Goss PJ, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci U S A 95(12):6750–6755PubMedCrossRefGoogle Scholar
  29. 29.
    Min Lee J, Gianchandani EP, Eddy JA, Papin JA (2006) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4(5):e1000086CrossRefGoogle Scholar
  30. 30.
    Nikiforova VJ, Willmitzer L (2007) Network visualization and network analysis. EXS 97:245–275PubMedGoogle Scholar
  31. 31.
    Satish Kumar V, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 20(8):212CrossRefGoogle Scholar
  32. 32.
    Papin JA, Palsson BO (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol 227(2):283–297PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang S, Jin G, Zhang XS, Chen L (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7(16):2856–2869PubMedCrossRefGoogle Scholar
  34. 34.
    Hu P, Bader G, Wigle DA, Emili A (2007) Computational prediction of cancer-gene function. Nat Rev Cancer 7(1):23–34PubMedCrossRefGoogle Scholar
  35. 35.
    Rice JJ, Tu Y, Stolovitzky G (2005) Reconstructing biological networks using conditional correlation analysis. Bioinformatics 21(6):765–773PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.NanoDelivery International, s.r.o.Břeclav-PoštornáCzech Republic
  3. 3.Genomic Health IncRedwood CityUSA

Personalised recommendations