Advertisement

Discovery: Use of Systems Biology for Identifying Targets

  • Aleš Prokop
  • Seth Michelson
Chapter
Part of the SpringerBriefs in Pharmaceutical Science & Drug Development book series (BRIEFSPSDD, volume 2)

Abstarct

In our introduction, we emphasized that a combination of reductionist (mechanism-based) and holistic (hypothesis-based) tools in the drug screening process may increase the efficiency of overall Drug Discovery. Among notable holistic tools are screens that target discovery and characterization of molecular probes (compounds) that will enable the investigation of fundamental biological function at molecular, cellular and whole organism levels. Such screening usually occurs at the earlier stages of drug discovery.

Keywords

Virtual Screening QSAR Model Combinatorial Chemistry Lead Discovery HQSAR Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dixon SJ, Stockwell BR (2009) Identifying druggable disease-modifying gene products. Curr Opin Chem Biol 13(5–6):549–555PubMedCrossRefGoogle Scholar
  2. 2.
    Borman S (2006) Chemical biology of the cell. Chem and Engg News 84(50):34–35CrossRefGoogle Scholar
  3. 3.
    Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24(7):805–815PubMedCrossRefGoogle Scholar
  4. 4.
    Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25(4):451–457PubMedCrossRefGoogle Scholar
  5. 5.
    Musso GA, Zhang Z, Emili A (2007) Experimental and computational procedures for the assessment of protein complexes on a genome-wide scale. Chem Rev 107(8):3585–3600PubMedCrossRefGoogle Scholar
  6. 6.
    Plewczynski D, Rychlewski L (2008) Meta-basic estimates the size of druggable human genome. J Mol Model 15(6):695–699PubMedCrossRefGoogle Scholar
  7. 7.
    Drews J (1995) Intent and coincidence in pharmaceutical discovery: the impact of biotechnology. Arzneimittelforschung 45(8):934–939PubMedGoogle Scholar
  8. 8.
    Drews J (2003) Strategic trends in the drug industry. Drug Discov Today 8(9):411–420PubMedCrossRefGoogle Scholar
  9. 9.
    Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today 10(23–24):1675–1682PubMedCrossRefGoogle Scholar
  10. 10.
    Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5(10):821–834 Erratum in Nat Rev Drug Discov 6(2):126 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730PubMedCrossRefGoogle Scholar
  12. 12.
    Ertl P (2003) Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43(2):374–380PubMedCrossRefGoogle Scholar
  13. 13.
    Dolle RE, Le Bourdonnec B, Goodman AJ, Morales GA, Thomas CJ, Zhang W (2007) Comprehensive survey of chemical libraries for drug discovery and chemical biology. J Comb Chem 10(6):753–802CrossRefGoogle Scholar
  14. 14.
    Menzella HG, Reisinger SJ, Welch M, Kealey JT, Kennedy J, Reid R, Tran CQ, Metaferia BB, Chen L, Baker HL, Huang XY, Bewley CA (2007) Synthetic macrolides that inhibit breast cancer cell migration in vitro. J Am Chem Soc 129(9):2434–2435CrossRefGoogle Scholar
  15. 15.
    Huwe CM (2006) Synthetic library design. Drug Discov Today 11(15–16):763–767PubMedCrossRefGoogle Scholar
  16. 16.
    Schnur DM (2008) Recent trends in library design: ‘rational design’ revisited. Curr Opin Drug Discov Devel 11(3):375–380PubMedGoogle Scholar
  17. 17.
    Marcaurelle LA, Johannes CW (2008) Application of natural product-inspired diversity-oriented synthesis to drug discovery. Prog Drug Des 66:187–216Google Scholar
  18. 18.
    Kaiser M, Wetzel S, Kumar K, Waldmann H (2008) Biology-inspired synthesis of compound libraries. Cell Mol Life Sci 65(7–8):1186–1201PubMedCrossRefGoogle Scholar
  19. 19.
    Burke D, Henderson DJ (2002) Chirality: a blueprint for the future. Br J Anaesth 88(4):563–576PubMedCrossRefGoogle Scholar
  20. 20.
    Stevens SM Jr, Prokai-Tatrai K, Prokai L (2005) Screening of combinatorial libraries for substrate preference by mass spectrometry. Anal Chem 77(2):698–701CrossRefGoogle Scholar
  21. 21.
    Moda TL, Montanari CA, Andricopulo AD (2007) Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 15(24):7738–7745PubMedCrossRefGoogle Scholar
  22. 22.
    Schuffenhauer A, Floersheim P, Acklin P, Jacoby E (2003) Similarity metrics for ligands reflecting the similarity of the target proteins. J Chem Inf Comput Sci 43(2):391–405PubMedCrossRefGoogle Scholar
  23. 23.
    Xie XQ, Chen JZ (2008) Data mining a small molecule drug screening representative subset from NIH PubChem. J Chem Inf Model 48(3):465–475PubMedCrossRefGoogle Scholar
  24. 24.
    Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P (2007) ChemDB update full-text search and virtual chemical space. Bioinformatics 23(17):2348–2351PubMedCrossRefGoogle Scholar
  25. 25.
    Leach AR, Hann MM, Burrows JN, Griffen EJ (2006) Fragment screening: an introduction. Mol Biosyst 2(9):430–446PubMedCrossRefGoogle Scholar
  26. 26.
    Erlanson DA (2002) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17(6):643–652CrossRefGoogle Scholar
  27. 27.
    Fattori D, Squarcia A, Bartoli S (2008) Fragment-based approach to drug lead discovery: overview and advances in various techniques. Drugs R D. 9(4):217–227PubMedCrossRefGoogle Scholar
  28. 28.
    Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432(7019):855–861PubMedCrossRefGoogle Scholar
  29. 29.
    Matter H, Baringhaus KH, Naumann T, Klabunde T, Pirard B (2001) Computational approaches towards the rational design of drug-like compound libraries. Comb Chem High Throughput Screen 4(6):453–475PubMedGoogle Scholar
  30. 30.
    Hou T, Wang J, Zhang W, Wang W, Xu X (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13(22):2653–2667PubMedCrossRefGoogle Scholar
  31. 31.
    Unger SH, Hansch C (1973) On model building in structure-activity relationships A reexamination of adrenergic blocking activity of beta–halo–beta–arylalkylamines. J Med Chem 16(7):745–749PubMedCrossRefGoogle Scholar
  32. 32.
    Esposito EX, Hopfinger AJ, Madura JD (2004) Methods for applying the quantitative structure-activity relationship paradigm. Methods Mol Biol 275:131–214PubMedCrossRefGoogle Scholar
  33. 33.
    Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13(34):3494–3504PubMedCrossRefGoogle Scholar
  34. 34.
    Potemkin V, Grishina M (2008) Principles for 3D/4D QSAR classification of drugs. Drug Discov Today 13(21–22):952–959PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.NanoDelivery International, s.r.o.Břeclav-PoštornáCzech Republic
  3. 3.Genomic Health IncRedwood CityUSA

Personalised recommendations