Adult Neural Stem Cells; Identity and Regulation

  • Tetsuya ImuraEmail author
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 4)


Recent advances in stem cell biology raise our hope that loss of neurons can be replaced to restore disrupted neural circuits. To translate it into effective clinical applications, we need to gain a deep knowledge about how to generate, navigate, and integrate new neurons at the right time and in the right place. Neural stem cells exist in the adult mammalian brain throughout life and contribute to the production of new neurons every day. Understanding the underlying biology of adult neurogenesis will provide a framework for the development of stem cell therapy against various neurological disorders. Recent studies highlight the glial nature of adult neural stem cells, which is well conserved among vertebrates. The behavior of these glia-like stem cells is regulated by complex molecular mechanisms, but the Wnt/beta-catenin signaling is one of the most important pathways involved in multiple aspects of adult neurogenesis.


Neural stem cells Adult neurogenesis Glia Wnt Beta-catenin 


  1. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15(5):749–761PubMedCrossRefGoogle Scholar
  2. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111(2):251–263PubMedCrossRefGoogle Scholar
  3. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 105(9):3581–3586PubMedCrossRefGoogle Scholar
  4. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278PubMedCrossRefGoogle Scholar
  5. Croce JC, McClay DR (2008) Evolution of the Wnt pathways. Methods Mol Biol 469:3–418PubMedCrossRefGoogle Scholar
  6. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716PubMedCrossRefGoogle Scholar
  7. Freese JL, Pino D, Pleasure SJ (2011) Wnt signaling in development and disease. Neurobiol Dis 38(2):148–153CrossRefGoogle Scholar
  8. Hatten ME, Roussel MF (2011) Development and cancer of the cerebellum. Trends Neurosci 34(3):134–142PubMedCrossRefGoogle Scholar
  9. Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2(9):653–660PubMedCrossRefGoogle Scholar
  10. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131(12):2791–2801PubMedCrossRefGoogle Scholar
  11. Imura T, Wang X, Noda T, Sofroniew MV, Fushiki S (2010) Adenomatous polyposis coli is essential for both neuronal differentiation and maintenance of adult neural stem cells in subventricular zone and hippocampus. Stem Cells 28(11):2053–2064PubMedCrossRefGoogle Scholar
  12. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11(2):77–86PubMedCrossRefGoogle Scholar
  13. Israsena N, Hu M, Fu W, Kan L, Kessler JA (2004) The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol 268(1):220–231PubMedCrossRefGoogle Scholar
  14. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34PubMedCrossRefGoogle Scholar
  15. Karalay O, Doberauer K, Vadodaria KC, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo MM, Tarabykin V, Lie DC, Jessberger S (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 108(14):5807–5812PubMedCrossRefGoogle Scholar
  16. Kaslin J, Ganz J, Brand M (2008) Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci 363(1489):101–122PubMedCrossRefGoogle Scholar
  17. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedCrossRefGoogle Scholar
  18. Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K, Asashima M, Gage FH (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105PubMedCrossRefGoogle Scholar
  19. Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80(6):281–307PubMedCrossRefGoogle Scholar
  20. Lyu J, Yamamoto V, Lu W (2008) Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell 15(5):773–780PubMedCrossRefGoogle Scholar
  21. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136(6):1017–1031PubMedCrossRefGoogle Scholar
  22. Merrill BJ (2008) Develop-WNTs in somatic cell reprogramming. Cell Stem Cell 3(5):465–466PubMedCrossRefGoogle Scholar
  23. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4(4):e115PubMedCrossRefGoogle Scholar
  24. Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M (2007) Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci USA 104(13):5668–5673PubMedCrossRefGoogle Scholar
  25. Munji RN, Choe Y, Li G, Siegenthaler JA, Pleasure SJ (2011) Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 31(5):1676–1687PubMedCrossRefGoogle Scholar
  26. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530PubMedCrossRefGoogle Scholar
  27. Purro SA, Ciani L, Hoyos-Flight M, Stamatakou E, Siomou E, Salinas PC (2008) Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J Neurosci 28(34):8644–8654PubMedCrossRefGoogle Scholar
  28. Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J (2007) Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 9(8):883–892PubMedCrossRefGoogle Scholar
  29. Salinas PC (2007) Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway. Trends Cell Biol 17(7):333–342PubMedCrossRefGoogle Scholar
  30. Schlessinger K, McManus EJ, Hall A (2007) Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol 178(3):355–361PubMedCrossRefGoogle Scholar
  31. Sun Y, Aiga M, Yoshida E, Humbert PO, Bamji SX (2009) Scribble interacts with beta-catenin to localize synaptic vesicles to synapses. Mol Biol Cell 20(14):3390–3400PubMedCrossRefGoogle Scholar
  32. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214PubMedCrossRefGoogle Scholar
  33. Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH (2009) Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 27(5):1130–1141PubMedCrossRefGoogle Scholar
  34. Woodhead GJ, Mutch CA, Olson EC, Chenn A (2006) Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 26(48):12620–12630PubMedCrossRefGoogle Scholar
  35. Yu X, Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6(11):1169–1177PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Pathology and Applied Neurobiology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations