Advertisement

Proteomic Characterization of Mesenchymal Stem Cell-Like Populations Derived from Various Tissue Types

  • Krzysztof M. MrozikEmail author
  • Jimin Xiong
  • Peter S. Zilm
  • Stan Gronthos
  • P. Mark Bartold
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 4)

Abstract

The evolution of proteomics has led to its application in identifying biomarkers of biological processes and pathways including signal transduction and cell development. Proteomic technologies are increasingly utilized to define the molecular mechanisms controlling mesenchymal stem/stromal cell (MSC) self-renewal, multipotency and fate. Bone marrow-derived MSCs are highly promising candidates in the field of regenerative medicine based on their high proliferative capacity, multi-lineage differentiation potential and immunomodulatory properties. Recently, equivalent MSC-like populations have also been isolated from adipose, dental and feto-maternal tissues. This chapter discusses the current technologies available for proteomic analysis and the studies performed on tissue-specific MSC-like populations to date.

Keywords

Proteomics Mesenchymal stem cells Mass spectrometry Differentiation Regeneration 

References

  1. Aebersold R, Cravatt BF (2002) Proteomics—advances, applications and the challenges that remain. Trends Biotechnol 20:S1–S2PubMedCrossRefGoogle Scholar
  2. Alldridge LC, Bryant CE (2003) Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal. Exp Cell Res 290:93–107PubMedCrossRefGoogle Scholar
  3. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795PubMedCrossRefGoogle Scholar
  4. Bairoch A (2010) Bioinformatics for human proteomics: current state and future status. Nat Proc. doi: 10.1038/npre.2010.5050.1
  5. Bennett KP, Bergeron C, Acar E, Klees RF, Vandenberg SL, Yener B, Plopper GE (2007) Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells. BMC Genomics 8:380PubMedCrossRefGoogle Scholar
  6. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMedCrossRefGoogle Scholar
  7. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679PubMedGoogle Scholar
  8. Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264PubMedGoogle Scholar
  9. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS 98:7841–7845PubMedCrossRefGoogle Scholar
  10. Dechat T, Shimi T, Adam SA, Rusinol AE, Andres DA, Spielmann HP, Sinensky MS, Goldman RD (2007) Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. PNAS 104:4955–4960PubMedCrossRefGoogle Scholar
  11. DeLany JP, Floyd ZE, Zvonic S, Smith A, Gravois A, Reiners E, Wu X, Kilroy G, Lefevre M, Gimble JM (2005) Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by adipogenesis. Mol Cell Proteomics 4:731–740PubMedCrossRefGoogle Scholar
  12. DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4:377–386PubMedCrossRefGoogle Scholar
  13. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedCrossRefGoogle Scholar
  14. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  15. Eppinga RD, Li Y, Lin JL, Lin JJ (2006) Tropomyosin and caldesmon regulate cytokinesis speed and membrane stability during cell division. Arch Biochem Biophys 456:161–174PubMedCrossRefGoogle Scholar
  16. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242PubMedCrossRefGoogle Scholar
  17. Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Bürgers HF, Gross B, Hunzinger C, Klüter H, Kuschinsky W, Eichler H (2005) Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis 26:2749–2758PubMedCrossRefGoogle Scholar
  18. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRefGoogle Scholar
  19. Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M (2005) Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23:1367–1377PubMedCrossRefGoogle Scholar
  20. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMedGoogle Scholar
  21. Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5:240–251PubMedCrossRefGoogle Scholar
  22. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369PubMedCrossRefGoogle Scholar
  23. Giusta MS, Andrade H, Santos AV, Castanheira P, Lamana L, Pimenta AMC, Goes AM (2010) Proteomic analysis of human mesenchymal stromal cells derived from adipose tissue undergoing osteoblast differentiation. Cytotherapy 12:478–490PubMedCrossRefGoogle Scholar
  24. Gorg A, Boguth G, Obermaier C, Weiss W (1998) Two-dimensional electrophoresis of proteins in an immobilized pH 4-12 gradient. Electrophoresis 19:1516–1519PubMedCrossRefGoogle Scholar
  25. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS 97:13625–13630PubMedCrossRefGoogle Scholar
  26. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835PubMedCrossRefGoogle Scholar
  27. Gronthos S, Fitter S, Diamond P, Simmons PJ, Itescu S, Zannettino AC (2007) A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells Dev 16:953–963PubMedCrossRefGoogle Scholar
  28. Gronthos S, McCarty R, Mrozik K, Fitter S, Paton S, Menicanin D, Itescu S, Bartold PM, Xian C, Zannettino ACW (2009) Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues. Stem Cells Dev 18:1253–1262PubMedCrossRefGoogle Scholar
  29. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedGoogle Scholar
  30. Huang GP, Pan ZJ, Huang JP, Yang JF, Guo CJ, Wang YG, Zheng Q, Chen R, Xu YL, Wang GZ, Xi YM, Shen D, Jin J, Wang JF (2008) Proteomic analysis of human bone marrow mesenchymal stem cells transduced with human telomerase reverse transcriptase gene during proliferation. Cell Prolif 41:625–644PubMedCrossRefGoogle Scholar
  31. Kadri T, Lataillade JJ, Doucet C, Marie A, Ernou I, Bourin P, Joubert-Caron R, Caron M, Lutomski D (2005) Proteomic study of Galectin-1 expression in human mesenchymal stem cells. Stem Cells Dev 14:204–212PubMedCrossRefGoogle Scholar
  32. Kaneki H, Takasugi I, Fujieda M, Kiriu M, Mizuochi S, Ide H (1999) Prostaglandin E2 stimulates the formation of mineralized bone nodules by a cAMP-independent mechanism in the culture of adult rat calvarial osteoblasts. J Cell Biochem 73:36–48PubMedCrossRefGoogle Scholar
  33. Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H, Takenawa T, Kaibuchi K (2005) CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 25:9920–9935PubMedCrossRefGoogle Scholar
  34. Lee WC, Lee KH (2004) Applications of affinity chromatography in proteomics. Anal Biochem 324:1–10PubMedCrossRefGoogle Scholar
  35. Lee HK, Lee BH, Park SA, Kim CW (2006) The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics 6:1223–1229PubMedCrossRefGoogle Scholar
  36. Mareddy S, Broadbent J, Crawford R, Xiao Y (2009) Proteomic profiling of distinct clonal populations of bone marrow mesenchymal stem cells. J Cell Biochem 106:776–786PubMedCrossRefGoogle Scholar
  37. Menicanin D, Bartold PM, Zannettino AC, Gronthos S (2010) Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev 19:1501–1510PubMedCrossRefGoogle Scholar
  38. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey P, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. PNAS 100:5807–5812PubMedCrossRefGoogle Scholar
  39. Monticone M, Liu Y, Tonachini L, Mastrogiacomo M, Parodi S, Quarto R, Cancedda R, Castagnola P (2004) Gene expression profile of human bone marrow stromal cells determined by restriction fragment differential display analysis. J Cell Biochem 92:733–744PubMedCrossRefGoogle Scholar
  40. Mrozik KM, Zilm PS, Bagley CJ, Hack S, Hoffmann P, Gronthos S, Bartold PM (2010) Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: analysis of differentially expressed proteins. Stem Cells Dev 19:1485–1499PubMedCrossRefGoogle Scholar
  41. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  42. Ong SY, Dai H, Leong KW (2006) Hepatic differentiation potential of commercially available human mesenchymal stem cells. Tissue Eng 12:3477–3485PubMedCrossRefGoogle Scholar
  43. Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278PubMedCrossRefGoogle Scholar
  44. Park HW, Shin JS, Kim CW (2007) Proteome of mesenchymal stem cells. Proteomics 7:2881–2894PubMedCrossRefGoogle Scholar
  45. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, Zivny JA, Vulpe CD (2008) Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8:1744–1749PubMedCrossRefGoogle Scholar
  46. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  47. Pivoriuunas A, Surovas A, Borutinskaitė V, Matuzevičius D, Treigytė G, Savickienė J, Tunaitis V, Aldonytė R, Jarmalavičiuutė A, Suriakaitė K, Liutkevičius E, Venalis A, Navakauskas D, Navakauskienė R, Magnusson K (2010) Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 19:1081–1093PubMedCrossRefGoogle Scholar
  48. Plavina T, Wakshull E, Hancock WS, Hincapie M (2007) Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J Proteome Res 6:662–671PubMedCrossRefGoogle Scholar
  49. Quinn CC, Gray GE, Hockfield S (1999) A family of proteins implicated in axon guidance and outgrowth. J Neurobiol 41:158–164PubMedCrossRefGoogle Scholar
  50. Rajesh RV, Heo GN, Park MR, Nam J, Kim N, Yoon D, Kim T, Lee H (2010) Proteomic analysis of bovine omental, subcutaneous and intramuscular preadipocytes during in vitro adipogenic differentiation. Comp Biochem Physiol Part D Genomics Proteomics 5:234–244PubMedCrossRefGoogle Scholar
  51. Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen O, McLeish KR, Klein JB (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835PubMedCrossRefGoogle Scholar
  52. Reichenberg E, Redlich M, Cancemi P, Zaks B, Fontana S, Pucci-Minafra I, Palmon A (2005) Proteomic analysis of protein components in periodontal ligament fibroblasts. J Periodontol 76:1645–1653PubMedCrossRefGoogle Scholar
  53. Roche S, Delorme B, Oostendorp RA, Barbet R, Caton D, Noel D, Boumediene K, Papadaki HA, Cousin B, Crozet C, Milhavet O, Casteilla L, Hatzfeld J, Jorgensen C, Charbord P, Lehmann S (2009) Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics 9:223–232PubMedCrossRefGoogle Scholar
  54. Salasznyk RM, Westcott AM, Klees RF, Ward DF, Xiang Z, Vandenberg S, Bennett K, Plopper GE (2005) Comparing the protein expression profiles of human mesenchymal stem cells and human osteoblasts using gene ontologies. Stem Cells Dev 14:354–366PubMedCrossRefGoogle Scholar
  55. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey P, Wang C, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRefGoogle Scholar
  56. Shan YX, Yang TL, Mestril R, Wang PH (2003) Hsp10 and Hsp60 suppress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signaling in cardiac muscle: implications on decreased myocardial protection in diabetic cardiomyopathy. J Biol Chem 278:45492–45498PubMedCrossRefGoogle Scholar
  57. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704PubMedCrossRefGoogle Scholar
  58. Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG, Wang CY (2002) Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20:587–591PubMedCrossRefGoogle Scholar
  59. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG, Kassem M (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20:592–596PubMedCrossRefGoogle Scholar
  60. Skalnikova H, Motlik J, Gadher SJ, Kovarova H (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708PubMedCrossRefGoogle Scholar
  61. Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW (2006) A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 24:2059–2071PubMedCrossRefGoogle Scholar
  62. Thesleff I, Aberg T (1999) Molecular regulation of tooth development. Bone 25:123–125PubMedCrossRefGoogle Scholar
  63. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRefGoogle Scholar
  64. Trimpin S, Brizzard B (2009) Analysis of insoluble proteins. Biotechniques 46:409–419PubMedCrossRefGoogle Scholar
  65. Unwin RD, Gaskell SJ, Evans CA, Whetton AD (2003) The potential for proteomic definition of stem cell populations. Exp Hematol 31:1147–1159PubMedCrossRefGoogle Scholar
  66. Urbas L, Brne P, Gabor B, Barut M, Strlic M, Petric TC, Strancar A (2009) Depletion of high-abundance proteins from human plasma using a combination of an affinity and pseudo-affinity column. J Chromatogr A 1216:2689–2694PubMedCrossRefGoogle Scholar
  67. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219:667–676PubMedCrossRefGoogle Scholar
  68. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337PubMedCrossRefGoogle Scholar
  69. Wang P, Bouwman FG, Mariman EC (2009) Generally detected proteins in comparative proteomics–a matter of cellular stress response? Proteomics 9:2955–2966PubMedCrossRefGoogle Scholar
  70. Wei X, Wu L, Ling J, Liu L, Liu S, Liu W, Li M, Xiao Y (2008) Differentially expressed protein profile of human dental pulp cells in the early process of odontoblast-like differentiation in vitro. J Endod 34:1077–1084PubMedCrossRefGoogle Scholar
  71. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350PubMedCrossRefGoogle Scholar
  72. Wu L, Wei X, Ling J, Liu L, Liu S, Li M, Xiao Y (2009) Early osteogenic differential protein profile detected by proteomic analysis in human periodontal ligament cells. J Periodontal Res 44:645–656PubMedCrossRefGoogle Scholar
  73. Ye NS, Chen J, Luo GA, Zhang RL, Zhao YF, Wang YM (2006) Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev 15:665–676PubMedCrossRefGoogle Scholar
  74. Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421PubMedCrossRefGoogle Scholar
  75. Zhang AX, Yu WH, Ma BF, Yu X, Mao FF, Liu W, Zhang J, Zhang X, Li S, Li M, Lahn BT, Xiang AP (2007) Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Mol Cell Biochem 304:167–179PubMedCrossRefGoogle Scholar
  76. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798PubMedCrossRefGoogle Scholar
  77. Zhuang H, Wang W, Tahernia AD, Levitz CL, Luchetti WT, Brighton CT (1996) Mechanical strain-induced proliferation of osteoblastic cells parallels increased TGF-beta 1 mRNA. Biochem Biophys Res Commun 229:449–453PubMedCrossRefGoogle Scholar
  78. Zolotarjova N, Mrozinski P, Chen H, Martosella J (2008) Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum. J Chromatogr A 1189:332–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Krzysztof M. Mrozik
    • 1
    Email author
  • Jimin Xiong
    • 1
  • Peter S. Zilm
    • 1
  • Stan Gronthos
    • 2
  • P. Mark Bartold
    • 1
  1. 1.Colgate Australian Clinical Dental Research Centre, Dental SchoolThe University of AdelaideAdelaideAustralia
  2. 2.Division of Haematology/Hanson Institute and Center for Stem Cell Research, Robinson InstituteUniversity of Medical and Veterinary science University of AdelaideAdelaideAustralia

Personalised recommendations