Advertisement

Malignant Gliomas: Treatment Using Genetically-Modified Neural Stem Cells

  • Michael C. OhEmail author
  • Mitchel S. Berger
  • Daniel A. Lim
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 4)

Abstract

Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumors, contain small population of tumor cells that carry cancer stem cell properties. These brain tumor stem cells (BTSCs) are highly invasive and mobile, have the capacity to self-renew, and are more resistant to radiation and chemotherapy. BTSCs can migrate away from the primary tumor sites and form microsatellite tumors. Thus, BTSCs have been proposed to play a key role in tumor progression, metastasis, and recurrence. Recent studies indicate that neural stem cells have the innate ability to track down tumor cells and may even slow tumor growth and progression. Thus, therapeutic neural stem cells can be developed by “arming” normal neural stem cells with genes cytotoxic to glioma cells and, more importantly, to BTSCs. Studies are currently underway to explore this new therapeutic approach to treat GBM using neural stem cells.

Keywords

Glioma Glioblastoma Neural stem cells Brain tumor stem cells Stem cell therapy Adjuvant therapy 

References

  1. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851PubMedCrossRefGoogle Scholar
  2. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006a) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  3. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006b) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848PubMedCrossRefGoogle Scholar
  4. Barresi V, Belluardo N, Sipione S, Mudo G, Cattaneo E, Condorelli DF (2003) Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther 10:396–402PubMedCrossRefGoogle Scholar
  5. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De Fraja C et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6:447–450PubMedCrossRefGoogle Scholar
  6. Blazek ER, Foutch JL, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 67:1–5PubMedCrossRefGoogle Scholar
  7. Brunda MJ (1994) Interleukin-12. J Leukoc Biol 55:280–288PubMedGoogle Scholar
  8. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228PubMedCrossRefGoogle Scholar
  9. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, Yu JS (2002a) Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62:7170–7174PubMedGoogle Scholar
  10. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002b) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663PubMedGoogle Scholar
  11. Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y, Black KL, Yu JS (2004) Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6:287–293PubMedCrossRefGoogle Scholar
  12. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16PubMedGoogle Scholar
  13. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  14. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636PubMedCrossRefGoogle Scholar
  15. Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25:2637–2646PubMedCrossRefGoogle Scholar
  16. Jeong M, Kwon YS, Park SH, Kim CY, Jeun SS, Song KW, Ko Y, Robbins PD, Billiar TR, Kim BM, Seol DW (2009) Possible novel therapy for malignant gliomas with secretable trimeric TRAIL. PLoS One 4:e4545PubMedCrossRefGoogle Scholar
  17. Kikuchi T, Joki T, Saitoh S, Hata Y, Abe T, Kato N, Kobayashi A, Miyazaki T, Ohno T (1999) Anti-tumor activity of interleukin-2-producing tumor cells and recombinant interleukin 12 against mouse glioma cells located in the central nervous system. Int J Cancer 80:425–430PubMedCrossRefGoogle Scholar
  18. Kim CY, Jeong M, Mushiake H, Kim BM, Kim WB, Ko JP, Kim MH, Kim M, Kim TH, Robbins PD et al (2006) Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Ther 13:330–338PubMedCrossRefGoogle Scholar
  19. Kim JH, Lee JE, Kim SU, Cho KG (2010) Stereological analysis on migration of human neural stem cells in the brain of rats bearing glioma. Neurosurgery 66:333–342; discussion 342PubMedCrossRefGoogle Scholar
  20. Kim SK, Cargioli TG, Machluf M, Yang W, Sun Y, Al-Hashem R, Kim SU, Black PM, Carroll RS (2005) PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 11:5965–5970PubMedCrossRefGoogle Scholar
  21. Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M, Oh W, Park SH, Sung YC, Jeun SS (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68:9614–9623PubMedCrossRefGoogle Scholar
  22. Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422PubMedCrossRefGoogle Scholar
  23. Li S, Tokuyama T, Yamamoto J, Koide M, Yokota N, Namba H (2005a) Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther 12:600–607PubMedCrossRefGoogle Scholar
  24. Li S, Tokuyama T, Yamamoto J, Koide M, Yokota N, Namba H (2005b) Potent bystander effect in suicide gene therapy using neural stem cells transduced with herpes simplex virus thymidine kinase gene. Oncology 69:503–508PubMedCrossRefGoogle Scholar
  25. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedCrossRefGoogle Scholar
  26. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCrossRefGoogle Scholar
  27. Lukas RV, Boire A, Nicholas MK (2009) Targeted therapy in the treatment of malignant gliomas. Onco Targets Ther 2:115–133PubMedGoogle Scholar
  28. Pluderi M, Lucini V, Caronzolo D, Pannacci M, Costa F, Carrabba G, Giussani C, Grosso S, Colleoni F, Scaglione F et al (2003) Long-term inhibition of glioma growth by systemic administration of human PEX. J Neurosurg Sci 47:69–78PubMedGoogle Scholar
  29. Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11:2389–2401PubMedCrossRefGoogle Scholar
  30. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273PubMedCrossRefGoogle Scholar
  31. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  32. Tada M, de Tribolet N (1993) Recent advances in immunobiology of brain tumors. J Neurooncol 17:261–271PubMedCrossRefGoogle Scholar
  33. Trounson A (2009) New perspectives in human stem cell therapeutic research. BMC Med 7:29PubMedCrossRefGoogle Scholar
  34. Tsurushima H, Yuan X, Dillehay LE, Leong KW (2007) Radioresponsive tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy for malignant brain tumors. Cancer Gene Ther 14:706–716PubMedCrossRefGoogle Scholar
  35. van Eekelen M, Sasportas LS, Kasmieh R, Yip S, Figueiredo JL, Louis DN, Weissleder R, Shah K (2010) Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 29:3185–3195PubMedCrossRefGoogle Scholar
  36. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells (Dayton, Ohio) 28:17–28CrossRefGoogle Scholar
  37. Yang SY, Liu H, Zhang JN (2004) Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12. DNA Cell Biol 23:381–389PubMedCrossRefGoogle Scholar
  38. Yuan X, Hu J, Belladonna ML, Black KL, Yu JS (2006) Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66:2630–2638PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michael C. Oh
    • 1
    Email author
  • Mitchel S. Berger
    • 1
  • Daniel A. Lim
    • 1
  1. 1.Department of Neurological SurgeryUniversity of California – San FranciscoSan FranciscoUSA

Personalised recommendations