Advertisement

Sensitivity of Hematopoietic and Leukemic Stem Cells to Hoxa Gene Levels

  • Charles-Etienne Lebert-Ghali
  • Joanne Margaret Ramsey
  • Alexander Thompson
  • Janetta BijlEmail author
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 4)

Abstract

Hematopoiesis is a very dynamic process as the short-lived mature blood cells need to be continuously re-placed to carry out their crucial tasks in oxygen delivery, wound healing and defence against pathogens. The ontogeny of hematopoietic differentiation originates with the hematopoietic stem cells, which acquire epigenetic changes that activate transcriptional programs resulting in progressive lineage restriction. This restriction is associated with morphological changes and a loss of proliferation in subsequent developmental stages of the progeny. Hematopoietic stem cells are rare and are characterized by their capacity to undergo self-renewal divisions securing their maintenance throughout a life-span. Hox genes are master control genes in cell fate determination of the embryonic body plan and are epigenetically regulated by the antagonistic actions of trithorax and polycomb genes. The expression of Hox genes in primitive hematopoietic cell populations and their frequent aberrant expression in leukemias support the concept that this set of developmental genes plays an important role in regulation of hematopoietic stem cell function, primarily self-renewal, proliferation, differentiation and lineage commitment. Comprehension of Hox gene function in hematopoiesis, in particular of stem cells and progenitors might thus not only lead to the development of new cell therapy strategies for hematopoietic deficiencies, but also to innovative strategies to interfere with cancer stem cell pathways.

Keywords

Hox Hoxa Hematopoietic stem cells Leukemic stem cells Hox gene expression Conditional ko mice ES cells 

References

  1. Argiropoulos B, Humphries RK (2007) Hox genes in hematopoiesis and leukemogenesis. Oncogene 26:6766–6776PubMedCrossRefGoogle Scholar
  2. Bach C, Buhl S, Mueller D, Garcia-Cuellar MP, Maethner E, Slany RK (2010) Leukemogenic transformation by HOXA cluster genes. Blood 115:2910–2918PubMedCrossRefGoogle Scholar
  3. Bijl J, Thompson A, Ramirez-Solis R, Krosl J, Grier DG, Lawrence HJ, Sauvageau G (2006) Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood 108:116–122PubMedCrossRefGoogle Scholar
  4. Chang CP, Shen WF, Rozenfeld S, Lawrence HJ, Largman C, Cleary ML (1995) Pbx proteins display hexapeptide-dependent co-operative DNA binding with a subset of Hox proteins. Genes Dev 9:663–674PubMedCrossRefGoogle Scholar
  5. Crooks GM, Fuller J, Petersen D, Izadi P, Malik P, Pattengale PK, Kohn DB, Gasson JC (1999) Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 94:519–528PubMedGoogle Scholar
  6. Dickson GJ, Kwasniewska A, Mills KI, Lappin TR, Thompson A (2009) Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal. Exp Hematol 37:322–333PubMedCrossRefGoogle Scholar
  7. Di-Poi N, Koch U, Radtke F, Duboule D (2010) Additive and global functions of HoxA cluster genes in mesoderm derivatives. Dev Biol 341:488–498PubMedCrossRefGoogle Scholar
  8. Duboule D, Morata G (1994) Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 10:358–364PubMedCrossRefGoogle Scholar
  9. Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ (2004) An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 14:2063–2069PubMedCrossRefGoogle Scholar
  10. Ewan KB, Dale TC (2008) The potential for targeting oncogenic WNT/beta-catenin signaling in therapy. Curr Drug Targets 9:532–547PubMedCrossRefGoogle Scholar
  11. Fournier M, Lebert-Ghali CE, Krosl G, Bijl JJ (2012) HOXA4 induces expansion of hematopoietic stem cells in vitro and confers enhancement of pro-B-cells in vivo. Stem Cells Dev 21(1)Google Scholar
  12. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin GA, Liu CG, Bloomfield CD, Andreeff M, Croce CM (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103:5078–5083PubMedCrossRefGoogle Scholar
  13. Greer JM, Puetz J, Thomas KR, Capecchi MR (2000) Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403:661–665PubMedCrossRefGoogle Scholar
  14. Gwin K, Frank E, Bossou A, Medina KL (2010) Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. J Immunol 185:6572–6583PubMedCrossRefGoogle Scholar
  15. Horvat-Switzer RD, Thompson AA (2006) HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megakaryocytic differentiation in vitro. Blood Cells Mol Dis 37:55–63PubMedCrossRefGoogle Scholar
  16. Hussein K, Dralle W, Theophile K, Kreipe H, Bock O (2009) Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann Hematol 88:325–332PubMedCrossRefGoogle Scholar
  17. Iacovino M, Hernandez C, Xu Z, Bajwa G, Prather M, Kyba M (2009) A conserved role for Hox paralog group 4 in regulation of hematopoietic progenitors. Stem Cells Dev 18:783–792PubMedCrossRefGoogle Scholar
  18. Iacovino M, Chong D, Szatmari I, Hartweck L, Rux D, Caprioli A, Cleaver O, Kyba M (2011) HoxA3 is an apical regulator of haemogenic endothelium. Nat Cell Biol 13:72–78PubMedCrossRefGoogle Scholar
  19. Jordan CT, Guzman ML (2004) Mechanisms controlling pathogenesis and survival of leukemic stem cells. Oncogene 23:7178–7187PubMedCrossRefGoogle Scholar
  20. Krumlauf R (1992) Evolution of the vertebrate Hox homeobox genes. Bioessays 14:245–252PubMedCrossRefGoogle Scholar
  21. Lawrence HJ, Sauvageau G, Humphries RK, Largman C (1996) The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14:281–291PubMedCrossRefGoogle Scholar
  22. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, Largman C (1997) Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89:1922–1930PubMedGoogle Scholar
  23. Lebert-Ghali CE, Fournier M, Dickson GJ, Thompson A, Sauvageau G, Bijl JJ (2010) HoxA cluster is haploinsufficient for activity of hematopoietic stem and progenitor cells. Exp Hematol 38:1074–1086PubMedCrossRefGoogle Scholar
  24. Magnusson M, Brun AC, Miyake N, Larsson J, Ehinger M, Bjornsson JM, Wutz A, Sigvardsson M, Karlsson S (2007) HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 109:3687–3696PubMedCrossRefGoogle Scholar
  25. Mahdipour E, Charnock JC, Mace KA (2011) Hoxa3 promotes the differentiation of hematopoietic progenitor cells into proangiogenic Gr-1  +  CD11b  +  myeloid cells. Blood 117:815–826PubMedCrossRefGoogle Scholar
  26. Medyouf H, Gao X, Armstrong F, Gusscott S, Liu Q, Gedman AL, Matherly LH, Schultz KR, Pflumio F, You MJ, Weng AP (2010) Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 115:1175–1184PubMedCrossRefGoogle Scholar
  27. Morgan R, Whiting K (2008) Differential expression of HOX genes upon activation of leukocyte sub-populations. Int J Hematol 87:246–249PubMedCrossRefGoogle Scholar
  28. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, Ma J, Minden MD, Downing JR, Dick JE (2011) Evolution of human BCR-ABL1 lymphoblastic leukemia-initiating cells. Nature 469:362–367PubMedCrossRefGoogle Scholar
  29. Payne KJ, Crooks GM (2002) Human hematopoietic lineage commitment. Immunol Rev 187:48–64PubMedCrossRefGoogle Scholar
  30. Pineault N, Helgason CD, Lawrence HJ, Humphries RK (2002) Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30:49–57PubMedCrossRefGoogle Scholar
  31. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414PubMedCrossRefGoogle Scholar
  32. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 91:12223–12227PubMedCrossRefGoogle Scholar
  33. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9:1753–1765PubMedCrossRefGoogle Scholar
  34. So CW, Karsunky H, Wong P, Weissman IL, Cleary ML (2004) Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 103:3192–3199PubMedCrossRefGoogle Scholar
  35. Thorsteinsdottir U, Sauvageau G, Humphries RK (1997) Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol Oncol Clin North Am 11:1221–1237PubMedCrossRefGoogle Scholar
  36. Wheadon H, Ramsey JM, Dobbin E, Dickson GJ, Corrigan PM, Freeburn RW, Thompson A (2011) Differential Hox expression in murine embryonic stem cell models of normal and malignant hematopoiesis. Stem Cells Dev 20:1465–1476PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Charles-Etienne Lebert-Ghali
    • 1
  • Joanne Margaret Ramsey
    • 2
  • Alexander Thompson
    • 2
  • Janetta Bijl
    • 1
    Email author
  1. 1.Centre de Recherche Hôpital Maisonneuve-RosemontMontréalCanada
  2. 2.Haematology, Centre for Cancer Research and Cell BiologyQueen’s University, BelfastBelfastUK

Personalised recommendations