Fifth Problem Area: Complexity and Non-Linearity

  • Kirsten von Elverfeldt
Part of the Springer Theses book series (Springer Theses)


In the preceding chapter we discussed that those systems which we generally observe in geomorphology cannot be regarded as systems in equilibrium. This is the case, because geomorphic systems are centres of flow, growth, and change—they are neither static, nor still, nor ‘dead’ (cf. [1, p. xii]). Thus, they are not in equilibrium. Non-linear systems are the norm, not the exception. With increasing results, which contradicted the equilibrium concept, this insight lead to an approach oriented towards non-linearity in the 1990s. When a non-linear approach is applied, every cause can become an effect and every effect can become a cause [2, p. 113], and a system’s equilibrium cannot be established. This insight thus was already communicated 40 years ago, but has, however, not been successfully distributed within the prevalent paradigm.


Dissipative Structure Equilibrium Concept Preceding Chapter Open Thermodynamic System Geomorphic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schneider ED, Sagan D (2005) Into the cool. Energy flow, thermodynamics, and life. The University of Chicago Press, Chicago, p 362Google Scholar
  2. 2.
    Schumm SA, Lichty RW (1965) Time, space, and causality in geomorphology. Am J Sci 263:110–119 FebruaryCrossRefGoogle Scholar
  3. 3.
    Hergarten S (2003) Landslides, sandpiles, and self-organized criticality. Nat Hazards Earth Syst Sci 3(3):505–514Google Scholar
  4. 4.
    Phillips JD (1992) The end of equilibrium? Geomorphology 5(3–5):195–201CrossRefGoogle Scholar
  5. 5.
    Phillips JD (1999) Divergence, convergence, and self-organization in landscapes. Ann Assoc Am Geogr 89(3):466–488CrossRefGoogle Scholar
  6. 6.
    Phillips JD (2006) Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76:109–121CrossRefGoogle Scholar
  7. 7.
    Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol Earth Syst Sci 10:731–742CrossRefGoogle Scholar
  8. 8.
    Schumm SA (1991) To interpret the earth. Ten ways to be wrong. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Thomas MF (2001) Landscape sensitivity in time and space—an introduction. Catena 42(2–4):83–98CrossRefGoogle Scholar
  10. 10.
    Malanson GP, Butler DR, Georgakakos KP (1992) Nonequilibrium geomorphic processes and deterministic chaos. Geomorphology 5:311–322CrossRefGoogle Scholar
  11. 11.
    Mayer L (1992) Some comments on equilibrium concepts and geomorphic systems. Geomorphology 5:277–295CrossRefGoogle Scholar
  12. 12.
    Renwick WH (1992) Equilibrium, disequilibrium, and nonequilibrium landforms in the landscape. Geomorphology 5:265–276CrossRefGoogle Scholar
  13. 13.
    Sack D (1992): New wine in old bottles: the historiography of a paradigm change. Geomorphology, 5:251–263Google Scholar
  14. 14.
    Phillips JD (2009) Changes, perturbations, and responses in geomorphic systems. Prog Phys Geogr 33(1):17–30CrossRefGoogle Scholar
  15. 15.
    Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. Wiley, New York, p 491Google Scholar
  16. 16.
    Baas ACW (2007) Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology 48(1–3):309–328Google Scholar
  17. 17.
    Lane SN, Richards KS (1997) Linking river channel form and process: time, space and causality revisited. Earth Surf Proc Land 22(3):249–260CrossRefGoogle Scholar
  18. 18.
    Prigogine I, Stengers I (1990) Entwicklung und Irreversibilität. In: Niedersen U, Pohlmann L (ed) Selbstorganisation und Determination. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 3–18Google Scholar
  19. 19.
    Harrison S (2001) On reductionism and emergence in geomorphology. Trans Inst British Geographers 26(3):327–339CrossRefGoogle Scholar
  20. 20.
    Phillips JD (1999) Earth surface systems: complexity, order and scale. Blackwell, Oxford, p 180Google Scholar
  21. 21.
    Phillips JD (2003) Sources of nonlinearity and complexity in geomorphic systems. Prog Phys Geogr 27(1):1–23CrossRefGoogle Scholar
  22. 22.
    Dikau R (2006) Komplexe Systeme in der Geomorphologie. Mitteilungen der Österreichischen Geographischen Gesellschaft 148:125–150Google Scholar
  23. 23.
    Murray B, Fonstad MA (2007) Preface: complexity (and simplicity) in landscapes. Geomorphology 91:173–177CrossRefGoogle Scholar
  24. 24.
    Schumm SA (1979) Geomorphic thresholds. The concept and its applications. Trans Inst British Geographers 4(4):485–515CrossRefGoogle Scholar
  25. 25.
    Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384CrossRefGoogle Scholar
  26. 26.
    Bak P (1996) How nature works. The science of self-organised criticality. Copernicus Press, New York, p 212Google Scholar
  27. 27.
    Merino E, Wang Y (2000) Geochemical self-organization in rocks: Occurrences, oberservations, modeling, testing–with emphasis on Agate genesis. In: Krug H-J, Kruhl J H (ed), Nichtgleichgewichtsprozesse und dissipative Strukturen in den Geowissenschaften. Non-equilibrium processes and dissipative structures in geoscience. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 13–46Google Scholar
  28. 28.
    Prigogine I (1967) Introduction to thermodynamics of irreversible processes. Interscience, New York, p 147Google Scholar
  29. 29.
    Prigogine I (1985) Vom Sein zum Werden. Zeit und Komplexität in den Naturwissenschaften. Piper, München, p 304Google Scholar
  30. 30.
    Prigogine I, Stengers I (1980) Einleitung: Die Herausforderung an die Wissenschaft. In: Prigogine I, Stengers I (ed) Dialog mit der Natur, München, pp 9–30Google Scholar
  31. 31.
    Chin A (2006) Urban transformation of river landscapes in a global context. Geomorphology 79:460–487CrossRefGoogle Scholar
  32. 32.
    Dearing JA, Zolitschka B (1999) System dynamics and environmental change: an exploratory study of Holocene lake sediments at Holzmaar, Germany. The Holocene 9(5):531–540CrossRefGoogle Scholar
  33. 33.
    Grams PE, Schmidt JC (2005) Equilibrium or indeterminante? Where sediment budgets fail: sediment mass balance and adjustment of channel form, Green River downstream from flaming Gorge Dam, Utah and Colorado. Geomorphology 71:156–181CrossRefGoogle Scholar
  34. 34.
    Petts GE, Gurnell AM (2005) Dams and geomorphology: research progress and future directions. Geomorphology 71:27–47CrossRefGoogle Scholar
  35. 35.
    Tucker GE (2009) ESEX commentary: natural experiments in landscape evolution. Earth Surf Proc Land 34:1450–1460CrossRefGoogle Scholar
  36. 36.
    Wang Z-Y, Wu B, Wang G (2007) Fluvial processes and morphological response in the Yellow and Weihe Rivers to closure and operation of Sanmenxia Dam. Geomorphology 91:65–79CrossRefGoogle Scholar
  37. 37.
    von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt–Systemperspektiven in der Geomorphologie. In: Egner H, Ratter BMW, Dikau R (eds) Umwelt als System–System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102Google Scholar
  38. 38.
    Chorley RJ, Schumm SA, Sudgen DE (1984) Geomorphology. London, New York, p 605Google Scholar
  39. 39.
    Dikau R (1996) Geomorphologische Reliefklassifikation und -analyse. Heidelberger Geographische Arbeiten, p 104Google Scholar
  40. 40.
    Dikau R (2005) Geomorphologische Perspektiven integrativer Forschungsansätze in Physischer Geographie und Humangeographie. In: Wardenga U, Müller-Mahn D (ed) Möglichkeiten und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. Forum ifl. Leibniz-Institut für Länderkunde, Leipzig, pp 91–108Google Scholar
  41. 41.
    Boulding KE (1980) Foreword. In: Zeleny M (ed) Autopoiesis. Dissipative structures and spontaneous social orders. Westview, Boulder, pp 17–21Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kirsten von Elverfeldt
    • 1
  1. 1.Institut für Geographie und Regionalforschung, Fakultät für WirtschaftswissenschaftenAlpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations