Fourth Problem Area: Equilibria

  • Kirsten von Elverfeldt
Part of the Springer Theses book series (Springer Theses)


From the perspective of physics, geomorphological systems are thermodynamic systems. As they are open, they cannot reach thermodynamic equilibrium as long as there any disequilibrium with the environment exists. Still, the state of equilibrium and thus the thought of steady stability builds a reference model for the problem of describing a big ensemble of interconnected components.


Steady State Dynamic Equilibrium Thermodynamic System Equilibrium Concept Erosional Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Prigogine I, Stengers I (1990) Entwicklung und Irreversibilität. In: Niedersen U, Pohlmann L (eds) Selbstorganisation und Determination. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 3–18Google Scholar
  2. 2.
    Prigogine I, Stengers I (1993) Das Paradox der Zeit. Zeit, Chaos und Quanten. Piper, München, p 338Google Scholar
  3. 3.
    Gilbert GK (1877) Geology of the Henry Mountains. Government Printing Office, Washington, p 160Google Scholar
  4. 4.
    Kennedy BA (1992) Hutton to Horton: views of sequence, progression and equilibrium in geomorphology. Geomorphology 5(3–5):231–250CrossRefGoogle Scholar
  5. 5.
    Bracken LJ, Wainwright J (2006) Geomorphological equilibrium: myth and metaphor? Trans Inst Br Geographer 31:167–178CrossRefGoogle Scholar
  6. 6.
    Hack JT (1960) Interpretation of erosional topography in humid temperate regions. Am J Sci, Bradley 258-A: 0–97Google Scholar
  7. 7.
    Ritter DF, Kochel RC, Miller JR (1995) Process geomorphology. Brown, Dubuque, p 546Google Scholar
  8. 8.
    McCoy ED, Shrader-Frechette K (1992) Community Ecology, Scale, and the Instability of the stability concept. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, (1):184–199Google Scholar
  9. 9.
    Niedersen U, Pohlmann L (1990) Komplexität, Singularität und Determination. Die Koordination der Heterogenität. In: Niedersen U, Pohlmann L (eds) Selbstorganisation und Determination. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 25–54Google Scholar
  10. 10.
    Krug H-J, Kruhl JH (2000) Einführung. In: Krug H-J, Kruhl JH (eds) Nichtgleichgewichtsprozesse und dissipative Strukturen in den Geowissenschaften. Non-Equilibrium Processes and Dissipative Structures in Geoscience. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 7–12Google Scholar
  11. 11.
    von Uexküll J (1949) Niegeschaute Welten. Die Umwelten meiner Freunde. Ein Erinnerungsbuch. Suhrkamp, Berlin, p 260 Frankfurt/MainGoogle Scholar
  12. 12.
    Chin A (2006) Urban transformation of river landscapes in a global context. Geomorphology 79:460–487CrossRefGoogle Scholar
  13. 13.
    Graf WL (1977) The rate law in fluvial geomorphology. Am J Sci 277(2):178–191CrossRefGoogle Scholar
  14. 14.
    Jantsch E (1979) Die Selbstorganisation des Universums. Vom Urknall zum menschlichen Geist. Hanser, Darmstadt, p 464Google Scholar
  15. 15.
    Gilbert GK (1909) The convexity of hillslopes. J Geol XVII(4):344–350CrossRefGoogle Scholar
  16. 16.
    Thorn CE, Welford MR (1994) The Equilibrium Concept in Geomorphology. Ann Assoc Am Geogr 84(4):666–696CrossRefGoogle Scholar
  17. 17.
    Davis WM (1899) The geographical cycle. Geog J 14(5):481–504CrossRefGoogle Scholar
  18. 18.
    Orme AR (2007) The rise and fall of the Davisian cycle of erosion: prelude, fugue, coda, and sequel. Phys Geogr 28(6):474–506CrossRefGoogle Scholar
  19. 19.
    Horton RE (1945) Erosional development of streams and their drainage basins; hydrological approach to quantitative morphology 56:257–370Google Scholar
  20. 20.
    Mackin JH (1948) Concept of the Graded River. Bull Geol Soc Am 59:463–512CrossRefGoogle Scholar
  21. 21.
    Hack JT (1975) Dynamic equilibrium and landscape evolution. In: Melhorn WC, Flemal RC (eds) Theories of Landform Development. Allen and Unwin, London, pp 87–102Google Scholar
  22. 22.
    Kesseli JE (1941) The concept of the graded river. J Geol XLIX(6):561–588CrossRefGoogle Scholar
  23. 23.
    Strahler AN (1950a) Equilibrium theory of erosional slopes approached by frequency distribution analysis. Part I Am J Sci 248:673–696Google Scholar
  24. 24.
    Strahler AN (1950b) Equilibrium theory of erosional slopes approached by frequency distribution analysis. Part II: significance tests applied to slope problems in the Verdugo and San Rafael Hills, California. Am J Sci 248:800–814Google Scholar
  25. 25.
    Strahler AN (1952) Dynamic basis of geomorphology. Bull Geol Soc Am 63:923–938CrossRefGoogle Scholar
  26. 26.
    Ahnert F (1994) Equilibrium, scale and inheritance in geomorphology. Geomorphology 11(2):125–140CrossRefGoogle Scholar
  27. 27.
    Bremer H (1984) Das Gleichgewichtskonzept in Zeit und Raum. Zeitschrift für Geomorphologie N.F. Suppl.-Bd. 50:11–18Google Scholar
  28. 28.
    Ahnert F (1954) Zur Frage der rückschreitenden Denudation und des dynamischen Gleichgewichts bei morphologischen Vorgängen. Erdkunde 8:61–64CrossRefGoogle Scholar
  29. 29.
    Ahnert F (1970) Functional relationships between denudation, relief, and uplift in large mid-altitude drainage basins. Am J Sci 268:243–263CrossRefGoogle Scholar
  30. 30.
    Ahnert F (1984) Local relief and the height limits of mountain ranges. Am J Sci 284:1035–1055CrossRefGoogle Scholar
  31. 31.
    Ahnert F (1987) Approaches to dynamic equilibrium in theoretical simulations of slope development. Earth Surf Proc Land 12:3–15CrossRefGoogle Scholar
  32. 32.
    Culling WEH (1957) Multicyclic streams and the equilibrium theory of grade. J Geol 65:259–274CrossRefGoogle Scholar
  33. 33.
    Schneider ED, Sagan D (2005) Into the cool. Energy flow, thermodynamics, and life. The University of Chicago Press, Chicago, p 362Google Scholar
  34. 34.
    Culling WEH (1987) Equifinality: Modern Approaches to dynamical Systems and Their Potential for Geographical Thought. Trans Inst Br Geographer 12(1):57–72CrossRefGoogle Scholar
  35. 35.
    Mayer L (1992) Some comments on equilibrium concepts and geomorphic systems. Geomorphology 5:277–295CrossRefGoogle Scholar
  36. 36.
    von Bertalanffy L (1940) Der Organismus als physikalisches System betrachtet. Die Naturwissenschaften 28(33):521–531CrossRefGoogle Scholar
  37. 37.
    von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111(2872):23–29CrossRefGoogle Scholar
  38. 38.
    Chorley RJ (1962) Geomorphology and General Systems Theory. Geological Survey professional paper. United States Government Printing Office, Washington, pp 1–10Google Scholar
  39. 39.
    von Bertalanffy L (1954) Das Fließgleichgewicht des Organismus. Kolloid-Zeitschrift 139:86–91CrossRefGoogle Scholar
  40. 40.
    Schumm SA, Lichty RW (1965) Time, space, and causality in geomorphology. Am J Sci 263:110–119CrossRefGoogle Scholar
  41. 41.
    Howard AD (1965) Geomorphological systems—equilibrium and dynamics. Am J Sci 263(4):302–312CrossRefGoogle Scholar
  42. 42.
    Bull WB (1991) Geomorphic responses to climatic change. Oxford University Press, Newyork, Oxford, p 326Google Scholar
  43. 43.
    Howard AD (1982) Equilibrium and time scales in geomorphology: application to sand-bed alluvial streams. Earth Surf Proc Land 7:303–325CrossRefGoogle Scholar
  44. 44.
    Chorley RJ, Kennedy BA (1971) Physical geography—A Systems Approach. LondonGoogle Scholar
  45. 45.
    Trimble SW (1975) Denudation studies: can we assume stream steady state? Science 188:1207–1208CrossRefGoogle Scholar
  46. 46.
    Schumm SA (1979) Geomorphic thresholds. The concept and its applications. Trans Inst Br Geographer 4(4): 85–515CrossRefGoogle Scholar
  47. 47.
    Dikau R (2006) Komplexe Systeme in der Geomorphologie. Mitteilungen der Österreichischen Geographischen Gesellschaft 148:125–150Google Scholar
  48. 48.
    von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt—Systemperspektiven in der Geomorphologie. In: Heike E, Ratter BMW, Dikau R (eds) Umwelt als System—System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102Google Scholar
  49. 49.
    Phillips JD (2007) Geomorphic equilibrium in southeast Texas rivers. University of Kentucky, LexingtonGoogle Scholar
  50. 50.
    Grams PE, Schmidt JC (2005) Equilibrium or indeterminante? Where sediment budgets fail: sediment mass balance and adjustment of channel form, Green River Downstream From Flaming Gorge Dam, Utah and Colorado. Geomorphology 71:156–181CrossRefGoogle Scholar
  51. 51.
    Hooke RL (1968) Steady-state relationships on arid-region alluvial fans in closed basins. Am J Sci 266:609–629CrossRefGoogle Scholar
  52. 52.
    Willett SD, Brandon MT (2002) On steady states in mountain belts. Geology 30(2):175–178CrossRefGoogle Scholar
  53. 53.
    Young A (1970) Concepts of equilibrium, grade and uniformity as applied to slopes. Geog J 136(4):585–592CrossRefGoogle Scholar
  54. 54.
    Montgomery K (1989) Concepts of equilibrium and evolution in geomorphology: the model of branch systems. Prog Phys Geogr 13(1):47–66CrossRefGoogle Scholar
  55. 55.
    Phillips JD (1992) The end of equilibrium? Geomorphology 5(3–5):195–201CrossRefGoogle Scholar
  56. 56.
    Smithson P, Addison K, Atkinson K (2002) Fundamentals of the physical environment. Routledge, London, p 627Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kirsten von Elverfeldt
    • 1
  1. 1.Institut für Geographie und Regionalforschung, Fakultät für WirtschaftswissenschaftenAlpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations