Advertisement

First Problem Area: Coherence of Basic Assumptions and Concepts

  • Kirsten von Elverfeldt
Chapter
  • 797 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The term ‘system’ is largely accepted as interpretation pattern within geomorphology, which is reflected in the amount of publications within which system theory serves as theoretical reference point. A search within the ISI Web of Science points to a strong increase of geomorphological system theoretical research within the 1990s and the first decade of the twenty first century (This search does not claim completeness and only serves as an indicator for a development. Furthermore, only those articles were captured that utilize “system” within title, abstract, or keywords). From 1960 to 1989 the amount of publications that referred to “geomorph” and “system” (The search algorithm was ‘geomorph*’ AND ‘systems’, and for the determination of the reference frame ‘geomorph’, respectively.) was only 28 of 903 (<5%). Within the following decades, however, system-theoretical studies showed an increase in numbers: approx. one-third of all geomorphological papers showed reference to systems in some form [27% (971 of 3,656) of the publications within the 1990s and 31% (2,205 of 7,044) from 2000 to 2009]. Although the reliability of these numbers is limited and, consequently, they are not supposed to stimulate any further analyses, it can be shown on a random basis that the theoretical foundation as well as the definitions and basic assumptions are rarely, if at all, reflected and analysed. This can be seen as an indication that systems are seen as given and ‘natural’ or obvious.

Keywords

Debris Flow System Boundary Implicit Theory Environmental Relation Morphological System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dikau R (2005) Geomorphologische Perspektiven integrativer Forschungsansätze in Physischer Geographie und Humangeographie. In: Wardenga U, Müller-Mahn D (eds) Möglichkeiten und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. Forum ifl. Leibniz-Institut für Länderkunde, Leipzig, pp 91–108Google Scholar
  2. 2.
    Cox NJ (2007) Kinds and problems of geomorphological explanation. Geomorphology 88(1–2):46–56CrossRefGoogle Scholar
  3. 3.
    Bak P (1996) How nature works. The science of self-organised criticality. Copernicus Press, New York, p 212Google Scholar
  4. 4.
    Hergarten S (2003) Landslides, sandpiles, and self-orgnaized criticality. Nat Hazard Earth Syst Sci 3(3):505–514CrossRefGoogle Scholar
  5. 5.
    Keiler M (2011) Geomorphology and complexity—inseparably connected? Zeitschrift für Geomorphologie 55(3):233–257CrossRefGoogle Scholar
  6. 6.
    Phillips JD (1992) The end of equilibrium? Geomorphology 5(3–5):195–201CrossRefGoogle Scholar
  7. 7.
    Phillips JD (1992) Nonlinear dynamical systems in geomorphology revolution or evolution? Geomorphology 5:219–229CrossRefGoogle Scholar
  8. 8.
    Phillips JD (2003) Sources of nonlinearity and complexity in geomorphic systems. Prog Phys Geogr 27(1):1–23CrossRefGoogle Scholar
  9. 9.
    Phillips JD (2006) Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76:109–121CrossRefGoogle Scholar
  10. 10.
    Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol Earth Syst Sci 10:731–742CrossRefGoogle Scholar
  11. 11.
    Schumm SA (1991) To interpret the earth. Ten ways to be wrong. Cambridg University Press, CambridgeGoogle Scholar
  12. 12.
    Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, ChicagoGoogle Scholar
  13. 13.
    Sternberg RJ, Conway BE, Ketron JL, Bernstein M (1981) People's conceptions of intelligence. J Pers Soc Psychol 41(1):37–55CrossRefGoogle Scholar
  14. 14.
    Furnham A (1988) Lay theories. Everyday understanding of problems in social sciences. Pergamon Press, New YorkGoogle Scholar
  15. 15.
    Eibl K (1976) Kritisch-rationale Literaturwissenschaft. Grundlagen zur erklärenden Literaturgeschichte. MünchenGoogle Scholar
  16. 16.
    Egner H, Elverfeldt K von (2009) A bridge over troubled waters? Systems theory and dialogue in geography. Area 41(3):319–328CrossRefGoogle Scholar
  17. 17.
    Scheidegger AE (1992) Limitations of the system approach in geomorphology. Geomorphology 5:213–217CrossRefGoogle Scholar
  18. 18.
    von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt—Systemperspektiven in der Geomorphologie. In: Egner H, Ratter BMW, Dikau R (eds) Umwelt als System—System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102Google Scholar
  19. 19.
    von Elverfeldt K, Glade T (2011) Systems theory in geomorphology. A challenge. Zeitschrift für Geomorphologie 55(3):87–108CrossRefGoogle Scholar
  20. 20.
    Seiffert H, Radnitzky G (ed) (1994) Handlexikon zur Wissenschaftstheorie. dtv Wissenschaft, München, p 502Google Scholar
  21. 21.
    Mayhew S, Penny A (eds) (1992) The concise Oxford Dictionary of Geography. Comprehensive coverage in one volume of both human and physical geography. Oxford Reference, OxfordGoogle Scholar
  22. 22.
    Brunotte E, Gebhardt H, Meurer M, Meusburger P, Nipper J (eds) (2002) Lexikon der Geographie. In vier Bänden, Heidelberg, BerlinGoogle Scholar
  23. 23.
    Chorley RJ, Kennedy BA (1971) Physical geography—a systems approach. LondonGoogle Scholar
  24. 24.
    Howard AD (1965) Geomorphological systems–equilibrium and dynamics. Am J Sci 263(4):302–312CrossRefGoogle Scholar
  25. 25.
    Bull WB (1991) Geomorphic responses to climatic change. Oxford University Press, Oxford, p 326Google Scholar
  26. 26.
    Huggett RJ (2003) Fundamentals of geomorphology. Routledge, London, p 336Google Scholar
  27. 27.
    Bailey KD (2007) Boundary maintenance in living systems theory and social entropy theory. In: The 51st annual meeting of the international society for the systems sciences. Integrated Systems Sciences: Systems Thinking, Modeling and Practice, Tokyo, pp 1–15Google Scholar
  28. 28.
    Baker VR, Pyne S (1978) G. K. Gilbert and modern geomorphology. Am J Sci 278:97–123CrossRefGoogle Scholar
  29. 29.
    Honig JM (1999) ThermodynamicsGoogle Scholar
  30. 30.
    White ID, Mottershead DN, Harrison SJ (1992) Environmental systems. Stanley Thornes (Publishers) Ltd, Cheltenham, p 616Google Scholar
  31. 31.
    Kennedy BA (1979) A naughty world. Trans Inst Br Geog 4(4):550–558CrossRefGoogle Scholar
  32. 32.
    Werner BT, McNamara DE (2007) Dynamics of coupled human-landscape systems. Geomorphology 91:393–407CrossRefGoogle Scholar
  33. 33.
    Christopherson RW (2006) Geosystems: An introduction to physical geography, p 689Google Scholar
  34. 34.
    Foerster H von (2006) Sicht und Einsicht. Versuche zu einer operativen Erkenntnistheorie. Carl-Auer, Heidelberg, p 233Google Scholar
  35. 35.
    Moran MJ, Shapiro HN (1992) Fundamentals of engineering thermodynamics. Wiley, New YorkGoogle Scholar
  36. 36.
    Thorn CE, Welford MR (1994) The equilibrium concept in geomorphology. Ann Assoc Am Geogr 84(4):666–696CrossRefGoogle Scholar
  37. 37.
    Sattelmayer T (2009) Thermodynamik I: Grundkonzepte und Definitionen. Available at http://www.td.mw.tum.de/tum-td/de/lehre/thermo_1/download/D-folien/B-Handout-Kapitel2.pdf. Accessed on 27 Nov 2009
  38. 38.
    Fuchs P (1992) Niklas Luhmann–beobachtet. Eine Einführung in die Systemtheorie. Westdeutscher Verlag, Opladen, p 219Google Scholar
  39. 39.
    Dubrovsky V (2004) Toward system principles: general system theory and the alternative approach. Syst Res Behav Sci 21:109–122CrossRefGoogle Scholar
  40. 40.
    Larses O, Elkhoury J (2005) Views on general systems theory. TRITA-MMK: 2005:10, Mechatronics Lab, Department of Machine Design, Royal Institute of Technology, KTH, StockholmGoogle Scholar
  41. 41.
    Prigogine I, Stengers I (1990) Entwicklung und Irreversibilität. In: Niedersen U, Pohlmann L (ed) Selbstorganisation und Determination. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 3–18Google Scholar
  42. 42.
    Spencer-Brown G (1996) Wahrscheinlichkeit und Wissenschaft. Carl Auer, Heidelberg, p 142Google Scholar
  43. 43.
    Chalmers AF (2001) Wege der Wissenschaft. Einführung in die Wissenschaftstheorie. Springer, Heidelberg, p 236Google Scholar
  44. 44.
    Schneider ED, Sagan D (2005) Into the cool. Energy flow, thermodynamics, and life. The University of Chicago Press, Chicago and London, p 362Google Scholar
  45. 45.
    Luhmann N (1986) Ökologische Kommunikation–Kann die moderne Gesellschaft sich auf ökologische Gefährdungen einstellen? Westdeutscher Verlag, Opladen, p 275Google Scholar
  46. 46.
    Foerster H von (1984) Observing systems. Intersystems Publications, Seaside, p 331Google Scholar
  47. 47.
    Spencer-Brown G (1997) Laws of form. Gesetze der Form. Bohmeier Verlag, Lübeck, p 200Google Scholar
  48. 48.
    Luhmann N (2008) Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, Frankfurt/Main, p 674Google Scholar
  49. 49.
    Luhmann N (2006) Einführung in die Systemtheorie. Heidelberg, p 347Google Scholar
  50. 50.
    Egner H (2008a) Gesellschaft, Mensch, Umwelt–beobachtet. Ein Beitrag zur Theorie der Geographie. Erdkundliches Wissen. Franz Steiner, Stuttgart, p 208Google Scholar
  51. 51.
    Luhmann N (1987) Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, Frankfurt/Main, p 674Google Scholar
  52. 52.
    Luhmann N (1997a) Selbstreferentielle Systeme. In: Simon FB (ed) Lebende Systeme. Wirklichkeitskonstruktionen in der systemischen Therapie. Suhrkamp, Frankfurt/MainGoogle Scholar
  53. 53.
    Maturana HR (1982) Erkennen: Die Organisation und Verkörperung von Wirklichkeit. Ausgewählte Arbeiten zur biologischen Epistemologie. Wissenschaftstheorie, Wissenschaft und Philosophie. Vieweg, Braunschweig/Wiesbaden, p 322Google Scholar
  54. 54.
    Maturana HR, Varela FJ (1984) Der Baum der Erkenntnis. Die biologischen Wurzeln des menschlichen Erkennens, p 280Google Scholar
  55. 55.
    Maturana HR, Varela FJ (1982) Autopoietische Systeme: Eine Bestimmung der lebendigen Organisation. In: Maturana HR (ed) Erkennen: Die Organisation und Verkörperung von Wirklichkeit. Ausgewählte Arbeiten zur biologischen Epistemologie. Wissenschaftstheorie, Wissenschaft und Philosophie. Vieweg, Braunschweig/Wiesbaden, pp 170–235Google Scholar
  56. 56.
    Bühl WL (1987) Grenzen der Autopoiesis. Kölner Z für Soziologie und Sozialpsychologie 39:225–254Google Scholar
  57. 57.
    Roth G (1986) Selbstorganisation—Selbsterhaltung—Selbstreferentialität. In: Dress A, Henrichs H, Küppers G (ed) Selbstorganisation. Die Entstehung von Ordnung in Natur und Gesellschaft. Piper, München, Zürich, p 149–180Google Scholar
  58. 58.
    Allefeld C (1999) Erkenntnistheoretische Konsequenzen der Systemtheorie. Die Theorie selbstreferentieller Systeme und der Konstruktivismus. Master Thesis, Freie Universität Berlin, Berlin, p 85Google Scholar
  59. 59.
    Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Die Naturwiss 58(10): 465–523Google Scholar
  60. 60.
    Maturana HR (1994) Was ist Erkennen? Piper, München, p 244Google Scholar
  61. 61.
    Lippe zur R (1994) Denken und Leben. Essay zur Einführung von Rudolf zur Lippe. In: Maturana HR (ed) Was ist Erkennen? Piper, München, pp 7–23Google Scholar
  62. 62.
    Jantsch E (1979) Die Selbstorganisation des Universums. Vom Urknall zum menschlichen Geist. Hanser Verlag, Darmstadt, p 464Google Scholar
  63. 63.
    Maturana HR (1980) Autopoiesis: reproduction, heredity and evolution. In: Zeleny M (ed) Autopoiesis, dissipative structures and spontaneous social orders, Boulder, pp 45–79Google Scholar
  64. 64.
    Zeleny M (ed) (1980) Autopoiesis, dissipative structures and spontaneous social orders. In: AAAS selected symposium 55, Westview, Boulder, p 149Google Scholar
  65. 65.
    Egner H (2010) Theoretische Geographie. Wissenschaftliche Buchgesellschaft, Darmstadt, p 144 Google Scholar
  66. 66.
    Pitty AF (1971) Introduction to geomorphology. Methuen and Co, Norwich, p 526Google Scholar
  67. 67.
    Pigliucci M (2000) Chaos and complexity. Should we be sceptical? Sceptic 8(3):62–70Google Scholar
  68. 68.
    Dikau R (1998) The need for field evidence in modelling landform evolution. In: Hergarten S, Neugebauer HJ (ed) Process modelling and landform evolution. Lecture notes in earth sciences, Springer-Verlag, Heidelberg, pp 3–12Google Scholar
  69. 69.
    Slaymaker O (1991) Mountain geomorphology: a theoretical framework for measurement programmes. In: Crozier MJ (ed) Geomorphology in unstable regions. Catena, Cremlingen, pp 427–437Google Scholar
  70. 70.
    von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt–Systemperspektiven in der Geomorphologie. In: Egner H, Ratter BMW, Dikau R (eds) Umwelt als System–System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102Google Scholar
  71. 71.
    von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111(2872):23–29CrossRefGoogle Scholar
  72. 72.
    Schrott L, Niederheide A, Hankammer M, Hufschmidt G, Dikau R (2002) Sediment storage in a mountain catchment: geomorphic coupling and temporal variability (Reintal, Bavarian Alps, Germany). Z Geomorphol 127:175–196Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kirsten von Elverfeldt
    • 1
  1. 1.Institut für Geographie und Regionalforschung, Fakultät für WirtschaftswissenschaftenAlpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations