Skip to main content

Phagosomal and Lysosomal NO Synthesis

  • Chapter
  • First Online:
The Biology of Subcellular Nitric Oxide

Abstract

Engulfment of particles by endocytosis is one of the most ancient and evolutionarily conserved cellular processes in the eukaryotic cell (Biol Cell 101:709–721, 2009). Endocytosis starts with the recognition and binding of particles by cell-surface receptors; followed by budding of the cell membrane and the formation of an endosome which internalizes the bounded particles. Finally, the endosome undergoes fusion with lysosomes containing hydrolytic enzymes to degrade the engulfed cargo (Nat Rev Microbiol 2:820–832, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Azevedo LC, Janiszewski M, Pontieri V, Pedro Mde A, Bassi E, Tucci PJ, Laurindo FR (2007) Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care 11:R120

    Article  PubMed  Google Scholar 

  • Banick PD, Chen Q, Xu YA, Thom SR (1997) Nitric oxide inhibits neutrophil beta 2 integrin function by inhibiting membrane-associated cyclic GMP synthesis. J Cell Physiol 172:12–24

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Ellis T, Zhang H, Lin W, Beauregard K, Habicht GS, Truong N (2001) Nitric oxide production by coelomocytes of Asterias forbesi. Dev Comp Immunol 25:1–10

    Article  PubMed  CAS  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  • Brennan RE, Russell K, Zhang G, Samuel JE (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675

    Article  PubMed  CAS  Google Scholar 

  • But PG, Murav’ev RA, Fomina VA, Rogovin VV (2004) Oxides of nitrogen (NO* and NO2-) as cofactors of the myeloperoxidase system. Izv Akad Nauk Ser Biol 3:269–273

    PubMed  Google Scholar 

  • Cedergren J, Follin P, Forslund T, Lindmark M, Sundqvist T, Skogh T (2003) Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS 111:963–968

    Article  PubMed  CAS  Google Scholar 

  • Chang ZL (2009) Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th anniversary of the 1908 nobel prize in physiology or medicine. Biol Cell 101:709–721

    Article  PubMed  CAS  Google Scholar 

  • Coles B, Bloodsworth A, Clark SR, Lewis MJ, Cross AR, Freeman BA, O’Donnell VB (2002) Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circ Res 91:375–381

    Article  PubMed  CAS  Google Scholar 

  • DiScipio RG, Schraufstatter IU, Sikora L, Zuraw BL, Sriramarao P (2006) C5a mediates secretion and activation of matrix metalloproteinase 9 from human eosinophils and neutrophils. Int Immunopharmacol 6:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Duguet A, Iijima H, Eum SY, Hamid Q, Eidelman DH (2001) Eosinophil peroxidase mediates protein nitration in allergic airway inflammation in mice. Am J Respir Crit Care Med 164:1119–1126

    PubMed  CAS  Google Scholar 

  • Ehrt S, Schnappinger D (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11:1170–1178

    Article  PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, Van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  PubMed  CAS  Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832

    Article  PubMed  CAS  Google Scholar 

  • Floris R, Piersma SR, Yang G, Jones P, Wever R (1993) Interaction of myeloperoxidase with peroxynitrite. a comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur J Biochem 215:767–775

    Article  PubMed  CAS  Google Scholar 

  • Franchini A, Conte A, Ottaviani E (1995) Nitric oxide: an ancestral immunocyte effector molecule. Adv Neuroimmunol 5:463–478

    Article  PubMed  CAS  Google Scholar 

  • Gambim MH, do Carmo Ade O, Marti L, Verissimo-Filho S, Lopes LR, Janiszewski M (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care 11:R107

    Article  PubMed  Google Scholar 

  • Gutierrez-Correa J, Krauth-Siegel RL, Stoppani AO (2000) Inactivation of Trypanosoma cruzi dihydrolipoamide dehydrogenase by leukocyte myeloperoxidase systems: role of hypochloride and nitrite related radicals. Rev Argent Microbiol 32:136–143

    PubMed  CAS  Google Scholar 

  • Heijnen HF, van Donselaar E, Slot JW, Fries DM, Blachard-Fillion B, Hodara R, Lightfoot R, Polydoro M, Spielberg D, Thomson L, Regan EA, Crapo J, Ischiropoulos H (2006) Subcellular localization of tyrosine-nitrated proteins is dictated by reactive oxygen species generating enzymes and by proximity to nitric oxide synthase. Free Radic Biol Med 40:1903–1913

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JG (1965) Phagocytosis. Annu Rev Microbiol 19:339–350

    Article  PubMed  CAS  Google Scholar 

  • Iijima H, Duguet A, Eum SY, Hamid Q, Eidelman DH (2001) Nitric oxide and protein nitration are eosinophil dependent in allergen-challenged mice. Am J Respir Crit Care Med 163:1233–1240

    PubMed  CAS  Google Scholar 

  • Jacobsen LC, Theilgaard-Monch K, Christensen EI, Borregaard N (2007) Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils. Blood 109:3084–3087

    PubMed  CAS  Google Scholar 

  • Jordao L, Bleck CK, Mayorga L, Griffiths G, Anes E (2008) On the killing of mycobacteria by macrophages. Cell Microbiol 10:529–548

    PubMed  CAS  Google Scholar 

  • Kenyon NJ, Van der Vliet A, Schock BC, Okamoto T, McGrew GM, Last JA (2002) Susceptibility to ozone-induced acute lung injury in iNOS-deficient mice. Am J Physiol Lung Cell Mol Physiol 282:L540–L545

    PubMed  CAS  Google Scholar 

  • Koarai A, Ichinose M, Sugiura H, Tomaki M, Watanabe M, Yamagata S, Komaki Y, Shirato K, Hattori T (2002) iNOS depletion completely diminishes reactive nitrogen-species formation after an allergic response. Eur Respir J 20:609–616

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Kambayashi Y, Takemoto K, Okuda J, Muto M, Ogino K (2005) Reactive nitrogen species formation in eosinophils and imbalance in nitric oxide metabolism are involved in atopic dermatitis-like skin lesions in NC/Nga mice. Free Radic Res 39:719–727

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara H, Miyamoto Y, Akaike T, Kubota T, Sawa T, Okamoto S, Maeda H (2000) Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun 68:4378–4383

    Article  PubMed  CAS  Google Scholar 

  • Loesch A, Milner P, Anglin SC, Crowe R, Miah S, McEwan JR, Burnstock G (1997) Ultrastructural localisation of nitric oxide synthase, endothelin and binding sites of lectin (from Bandeirea simplicifolia) in the rat carotid artery after balloon catheter injury. J Anat 190(Pt 1):93–104

    Article  PubMed  CAS  Google Scholar 

  • Luckner-Minden C, Fischer I, Langhans CD, Schiller M, Kropf P, Muller I, Hohlfeld JM, Ho AD, Munder M (2010) Human eosinophil granulocytes do not express the enzyme arginase. J Leukoc Biol 87:1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Maarsingh H, Zaagsma J, Meurs H (2009) Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol 158:652–664

    Article  PubMed  CAS  Google Scholar 

  • Malawista SE, Montgomery RR, van Blaricom G (1992) Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts. a new microbicidal pathway for polymorphonuclear leukocytes. J Clin Invest 90:631–636

    Article  PubMed  CAS  Google Scholar 

  • Malawista SE, Montgomery RR, Van Blaricom G (1996) Microbial killing by human neutrophil cytokineplasts: similar suppressive effects of reversible and irreversible inhibitors of nitric oxide synthase. J Leukoc Biol 60:753–757

    PubMed  CAS  Google Scholar 

  • Maruo K, Kayashima KI, Ono T (1999) Expression of neuronal nitric oxide synthase in dermal infiltrated eosinophils in eosinophilic pustular folliculitis. Br J Dermatol 140:417–420

    Article  PubMed  CAS  Google Scholar 

  • Munder M, Mollinedo F, Calafat J, Canchado J, Gil-Lamaignere C, Fuentes JM, Luckner C, Doschko G, Soler G, Eichmann K, Muller FM, Ho AD, Goerner M, Modolell M (2005) Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105:2549–2556

    Article  PubMed  CAS  Google Scholar 

  • Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, Kropf P, Mueller I, Kolb A, Modolell M, Ho AD (2006) Suppression of T-cell functions by human granulocyte arginase. Blood 108:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Napimoga MH, Vieira SM, Dal-Secco D, Freitas A, Souto FO, Mestriner FL, Alves-Filho JC, Grespan R, Kawai T, Ferreira SH, Cunha FQ (2008) Peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-Delta12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway. J Immunol 180:609–617

    PubMed  CAS  Google Scholar 

  • Nath J, Powledge A (1997) Modulation of human neutrophil inflammatory responses by nitric oxide: studies in unprimed and LPS-primed cells. J Leukoc Biol 62:805–816

    PubMed  CAS  Google Scholar 

  • Nieto-Fernandez FE, Mattocks D, Cavani F, Salzet M, Stefano GB (1999) Morphine coupling to invertebrate immunocyte nitric oxide release is dependent on intracellular calcium transients. Comp Biochem Physiol B Biochem Mol Biol 123:295–299

    Article  PubMed  CAS  Google Scholar 

  • Numata M, Suzuki S, Miyazawa N, Miyashita A, Nagashima Y, Inoue S, Kaneko T, Okubo T (1998) Inhibition of inducible nitric oxide synthase prevents LPS-induced acute lung injury in dogs. J Immunol 160:3031–3037

    PubMed  CAS  Google Scholar 

  • O’Neill HC, Quah BJ (2008) Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal 1:pe8

    Article  PubMed  Google Scholar 

  • Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93

    Article  PubMed  CAS  Google Scholar 

  • Prado CM, Leick-Maldonado EA, Yano L, Leme AS, Capelozzi VL, Martins MA, Tiberio IF (2006) Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. Am J Respir Cell Mol Biol 35:457–465

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–722

    PubMed  CAS  Google Scholar 

  • Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81(10):1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Riazantseva NV, Zhavoronok TV, Stepovaia EA, Starikov Iu V, Bychkov VA (2010) The role of nitric oxide synthesis induction and inhibition in regulation of blood neutrophil cell death during oxidative disbalance. Biomed Khim 56:587–595

    PubMed  CAS  Google Scholar 

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MS, Op den Camp HJ, Derksen JW, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Hernandez S, Rodriguez-Monroy MA, Moreno-Fierros L, Jarillo-Luna A, Carrasco-Yepez M, Miliar-Garcia A, Campos-Rodriguez R (2007) Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri. Parasitol Res 101:269–274

    Article  PubMed  Google Scholar 

  • Saini R, Patel S, Saluja R, Sahasrabuddhe AA, Singh MP, Habib S, Bajpai VK, Dikshit M (2006) Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies. J Leukoc Biol 79:519–528

    Article  PubMed  CAS  Google Scholar 

  • Saluja R, Saini R, Mitra K, Bajpai VK, Dikshit M (2010) Ultrastructural immunogold localization of nitric oxide synthase isoforms in rat and human eosinophils. Cell Tissue Res 340:381–388

    Article  PubMed  CAS  Google Scholar 

  • Saluja R, Jyoti A, Chatterjee M, Habib S, Verma A, Mitra K, Barthwal MK, Bajpai VK, Dikshit M (2011) Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells. Biochim Biophys Acta 1813(10):1700–1707

    Article  PubMed  CAS  Google Scholar 

  • Sandhu JK, Privora HF, Wenckebach G, Birnboim HC (2000) Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. Am J Pathol 156:509–518

    Article  PubMed  CAS  Google Scholar 

  • Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA (1999) Effects of reactive oxygen and nitrogen metabolites on RANTES- and IL-5-induced eosinophil chemotactic activity in vitro. Am J Pathol 155:591–598

    Article  PubMed  CAS  Google Scholar 

  • Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA (2000a) Effects of reactive oxygen and nitrogen metabolites on eotaxin-induced eosinophil chemotactic activity in vitro. Am J Respir Cell Mol Biol 22:61–67

    CAS  Google Scholar 

  • Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA (2000b) Inhibition of MIP-1alpha-induced human neutrophil and monocyte chemotactic activity by reactive oxygen and nitrogen metabolites. J Lab Clin Med 135:161–169

    Article  CAS  Google Scholar 

  • Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA (2000c) Reactive nitrogen and oxygen species attenuate interleukin- 8-induced neutrophil chemotactic activity in vitro. J Biol Chem 275:10826–10830

    Article  CAS  Google Scholar 

  • Schleicher M, Jockusch B (2008) Actin: its cumbersome pilgrimage through cellular compartments. Histochem Cell Biol 129:695–704

    Article  PubMed  CAS  Google Scholar 

  • Sethi S, Sharma P, Dikshit M (2001) Nitric oxide- and oxygen-derived free radical generation from control and lipopolysaccharide-treated rat polymorphonuclear leukocyte. Nitric Oxide 5:482–493

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Ishida H, Fukuyama N, Todorov R, Genka C, Nakazawa H (1998) Peroxynitrite is not a major mediator of endothelial cell injury by activated neutrophils in vitro. Cardiovasc Res 39:485–491

    Article  PubMed  CAS  Google Scholar 

  • Takemoto K, Ogino K, Shibamori M, Gondo T, Hitomi Y, Takigawa T, Wang DH, Takaki J, Ichimura H, Fujikura Y, Ishiyama H (2007a) Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma. Am J Physiol Lung Cell Mol Physiol 293:L1419–L1426

    Article  CAS  Google Scholar 

  • Takemoto K, Ogino K, Wang DH, Takigawa T, Kurosawa CM, Kamyabashi Y, Hibino Y, Hitomi Y, Ichimura H (2007b) Biochemical characterization of reactive nitrogen species by eosinophil peroxidase in tyrosine nitration. Acta Med Okayama 61:17–30

    CAS  Google Scholar 

  • Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4:897–901

    Article  PubMed  CAS  Google Scholar 

  • Uesugi M, Yoshida K, Jasin HE (2000) Inflammatory properties of IgG modified by oxygen radicals and peroxynitrite. J Immunol 165:6532–6537

    PubMed  CAS  Google Scholar 

  • Vodovotz Y, Russell D, Xie QW, Bogdan C, Nathan C (1995) Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J Immunol 154:2914–2925

    PubMed  CAS  Google Scholar 

  • von Bargen K, Wohlmann J, Taylor GA, Utermohlen O, Haas A (2011) Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron. Infect Immun 79(5):2098–2111

    Article  PubMed  CAS  Google Scholar 

  • Weissmann G (1964) Lysosomes. Blood 24:594–606

    PubMed  CAS  Google Scholar 

  • Winberg ME, Rasmusson B, Sundqvist T (2007) Leishmania donovani: inhibition of phagosomal maturation is rescued by nitric oxide in macrophages. Exp Parasitol 117:165–170

    Article  PubMed  CAS  Google Scholar 

  • Winston BW, Krein PM, Mowat C, Huang Y (1999) Cytokine-induced macrophage differentiation: a tale of 2 genes. Clin Invest Med 22:236–255

    PubMed  CAS  Google Scholar 

  • Wu W, Chen Y, Hazen SL (1999) Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 274:25933–25944

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TA, Lincoln TM, Pryzwansky KB (1993) Regulation of human neutrophil degranulation by LY-83583 and L-arginine: role of cGMP-dependent protein kinase. Am J Physiol 265:C201–C211

    PubMed  CAS  Google Scholar 

  • Xia Y, Roman LJ, Masters BS, Zweier JL (1998) Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem 273:22635–22639

    Article  PubMed  CAS  Google Scholar 

  • Zagryazhskaya AN, Lindner SC, Grishina ZV, Galkina SI, Steinhilber D, Sud’ina GF (2010) Nitric oxide mediates distinct effects of various LPS chemotypes on phagocytosis and leukotriene synthesis in human neutrophils. Int J Biochem Cell Biol 42:921–931

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rőszer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rőszer, T. (2012). Phagosomal and Lysosomal NO Synthesis. In: The Biology of Subcellular Nitric Oxide. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2819-6_8

Download citation

Publish with us

Policies and ethics