Skip to main content

The Perspectives of Stem Cell-Based Therapy in Neurological Diseases

  • Chapter
  • First Online:
Book cover Stem Cells and Human Diseases

Abstract

The impairment of function of Central Nervous System (CNS) due to the loss of nervous cells is the crucial feature of so called neurological degenerative diseases, including: Parkinson disease (PD), Alzheimer disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Huntington Disease (HD). The social importance of treatment of those two first pathologies is increasing contemporary as a result of the aging of population. Multiple Sclerosis (MS) is another devastating neurological disease in which not only myelin sheet but also neuronal degeneration occurs (Brain 132(Pt 5):1175–1189, 2009). Until now there is no effective treatment, although during last decades the diagnostic possibilities dramatically improved. It is understandable that new opportunities of the use of stem cell progenitors of neurons are the topics in the developing research. There are also perspectives for implementation of the stem cells transplantation in the treatment of loss of neurons due to the brain or spinal cord damage, as a result of the stroke and mechanical injury. In human, the early transplantation stem cells trials present a huge variety of outcomes ranging from significant clinical benefit to worsening of symptoms with severe side effects. As the pathophysiology differs in PD, ALS, MS and stroke, different cell sources for transplantation might be required for optimal clinical improvement. Elementary examination is compulsory before stem cell transplantation therapy can become a realistic clinical treatment. Recently, the overall goal for many laboratories in their research became to understand the function of human brain stem cells and how they may play a role in the origin of brain tumors. Understanding the relationship between the genesis of brain tumors and the potential interventions using stem cells are of greatest importance and has been also recently a topic for many publications.

Dr. Lopaczynski contributed to this article in his personal capacity. The views expressed are his own and do not necessarily represent the views of the National Institutes of Health or the United States Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo AK, Vallier L (2010) Emerging use of stem cells in regenerative medicine. Biochem J 428(1):11–23

    PubMed  CAS  Google Scholar 

  2. Richardson RM, Holloway KL, Bullock MR, Broaddus WC, Fillmore HL (2006) Isolation of neuronal progenitor cells from the adult human neocortex. Acta Neurochir (Wien) 148(7):773–777

    CAS  Google Scholar 

  3. Andersson ER, Lendahl U (2009) Regenerative medicine: a 2009 overview. J Intern Med 266(4):303–310

    PubMed  CAS  Google Scholar 

  4. Andres RH, Choi R, Steinberg GK, Guzman R (2008) Potential of adult neural stem cells in stroke therapy. Regen Med 3(6):893–905

    PubMed  Google Scholar 

  5. Hara K, Yasuhara T, Maki M et al (2008) Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog Neurobiol 85(3):318–334

    PubMed  CAS  Google Scholar 

  6. Bliss TM, Kelly S, Shah AK et al (2006) Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res 83(6):1004–1014

    PubMed  CAS  Google Scholar 

  7. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    PubMed  CAS  Google Scholar 

  8. Ma J, Shen Z, Zhang Q, Zhu T, Yao K (2011) The effect of siRNA-VEGF on the growth of REC in retinal pigment epithelial cell and retinal endothelial cell co-culture system. Yan Ke Xue Bao 26(2):20–27

    PubMed  Google Scholar 

  9. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256

    PubMed  CAS  Google Scholar 

  10. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    PubMed  CAS  Google Scholar 

  11. England T, Martin P, Bath PM (2009) Stem cells for enhancing recovery after stroke: a review. Int J Stroke 4(2):101–110

    PubMed  Google Scholar 

  12. Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy for stroke. Stroke 38(2 Suppl):817–826

    PubMed  Google Scholar 

  13. Hicks A, Jolkkonen J (2009) Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars) 69(1):1–11

    Google Scholar 

  14. Gornicka-Pawlak E, Janowski M, Habich A et al (2011) Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment. Acta Neurobiol Exp (Wars) 71(1):46–64

    Google Scholar 

  15. Nagai A, Kim WK, Lee HJ et al (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2(12):e1272

    PubMed  Google Scholar 

  16. Sokolova IB, Fedotova OR, Zin’kova NN, Kruglyakov PV, Polyntsev DG (2006) Effect of mesenchymal stem cell transplantation on cognitive functions in rats with ischemic stroke. Bull Exp Biol Med 142(4):511–514

    PubMed  CAS  Google Scholar 

  17. Borlongan CV, Evans A, Yu G, Hess DC (2005) Limitations of intravenous human bone marrow CD133+ cell grafts in stroke rats. Brain Res 1048(1–2):116–122

    PubMed  CAS  Google Scholar 

  18. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35(10):2385–2389

    PubMed  Google Scholar 

  19. Kurozumi K, Nakamura K, Tamiya T et al (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1):96–104

    PubMed  CAS  Google Scholar 

  20. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19):10711–10716

    PubMed  CAS  Google Scholar 

  21. Brazzini A, Cantella R, De la CA et al (2010) Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J Vasc Interv Radiol 21(4):443–451

    PubMed  Google Scholar 

  22. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  23. Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    PubMed  CAS  Google Scholar 

  24. Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    PubMed  CAS  Google Scholar 

  25. Ekonomou A, Ballard CG, Pathmanaban ON et al (2010) Increased neural progenitors in vascular dementia. Neurobiol Aging 32(12):2152–61

    Google Scholar 

  26. Michejda M (2004) Which stem cells should be used for transplantation? Fetal Diagn Ther 19(1):2–8

    PubMed  Google Scholar 

  27. Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34(7):914–925

    PubMed  CAS  Google Scholar 

  28. Fu YS, Cheng YC, Lin MY et al (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124

    PubMed  Google Scholar 

  29. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P (2008) Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol 85(4):407–432

    PubMed  CAS  Google Scholar 

  30. Venkataramana NK, Kumar SK, Balaraju S et al (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155(2):62–70

    PubMed  CAS  Google Scholar 

  31. Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204(1):77–87

    PubMed  CAS  Google Scholar 

  32. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28(2):329–343

    PubMed  CAS  Google Scholar 

  33. Keene CD, Chang RC, Lopez-Yglesias AH et al (2010) Suppressed accumulation of cerebral amyloid beta peptides in aged transgenic Alzheimer’s disease mice by transplantation with wild-type or prostaglandin E2 receptor subtype 2-null bone marrow. Am J Pathol 177(1):346–354

    PubMed  CAS  Google Scholar 

  34. Ryu JK, Cho T, Wang YT, McLarnon JG (2009) Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. J Neuroinflammation 6:39

    PubMed  Google Scholar 

  35. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest 120(1):29–40

    PubMed  CAS  Google Scholar 

  36. Thonhoff JR, Ojeda L, Wu P (2009) Stem cell-derived motor neurons: applications and challenges in amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 4(3):178–199

    PubMed  CAS  Google Scholar 

  37. Bohl D, Liu S, Blanchard S, Hocquemiller M, Haase G, Heard JM (2008) Directed evolution of motor neurons from genetically engineered neural precursors. Stem Cells 26(10):2564–2575

    PubMed  CAS  Google Scholar 

  38. Mitne-Neto M, Machado-Costa M, Marchetto MC et al (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20(18):3642–52

    Google Scholar 

  39. Karussis D, Karageorgiou C, Vaknin-Dembinsky A et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194

    PubMed  Google Scholar 

  40. Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N et al (2008) Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS One 3(6):e2494

    PubMed  Google Scholar 

  41. Habisch HJ, Janowski M, Binder D et al (2007) Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm 114(11):1395–1406

    PubMed  Google Scholar 

  42. Yan J, Xu L, Welsh AM et al (2006) Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells 24(8):1976–1985

    PubMed  CAS  Google Scholar 

  43. Zhao CP, Zhang C, Zhou SN et al (2007) Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9(5):414–426

    PubMed  CAS  Google Scholar 

  44. Mazzini L, Ferrero I, Luparello V et al (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223(1):229–237

    PubMed  CAS  Google Scholar 

  45. Brustle O, Jones KN, Learish RD et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428):754–756

    PubMed  CAS  Google Scholar 

  46. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49(3):385–396

    PubMed  Google Scholar 

  47. Blakemore WF (1977) Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266(5597):68–69

    PubMed  CAS  Google Scholar 

  48. Einstein O, Fainstein N, Vaknin I et al (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61(3):209–218

    PubMed  CAS  Google Scholar 

  49. Bai L, Lennon DP, Eaton V et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57(11):1192–1203

    PubMed  Google Scholar 

  50. Zhang J, Li Y, Lu M et al (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84(3):587–595

    PubMed  CAS  Google Scholar 

  51. Chen Q, Long Y, Yuan X et al (2005) Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 80(5):611–619

    PubMed  CAS  Google Scholar 

  52. Connick P, Kolappan M, Patani R et al (2011) The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12:62

    PubMed  Google Scholar 

  53. Luo Y (2011) Cell-based therapy for stroke. J Neural Transm 118(1):61–74

    PubMed  Google Scholar 

  54. Jablonska A, Lukomska B (2011) Stroke induced brain changes: implications for stem cell transplantation. Acta Neurobiol Exp (Wars) 71(1):74–85

    Google Scholar 

  55. Espinoza-Rojo M, Iturralde-Rodriguez KI, Chanez-Cardenas ME, Ruiz-Tachiquin ME, Aguilera P (2010) Glucose transporters regulation on ischemic brain: possible role as therapeutic target. Cent Nerv Syst Agents Med Chem 10(4):317–325

    PubMed  CAS  Google Scholar 

  56. Locatelli F, Bersano A, Ballabio E et al (2009) Stem cell therapy in stroke. Cell Mol Life Sci 66(5):757–772

    PubMed  CAS  Google Scholar 

  57. Biernaskie J, Corbett D (2001) Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21(14):5272–5280

    PubMed  CAS  Google Scholar 

  58. Lichtenwalner RJ, Parent JM (2006) Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab 26(1):1–20

    PubMed  CAS  Google Scholar 

  59. Kim DY, Park SH, Lee SU et al (2007) Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neurosci Res 58(2):164–175

    PubMed  CAS  Google Scholar 

  60. Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20(2):101–107

    PubMed  Google Scholar 

  61. Jagasia R, Song H, Gage FH, Lie DC (2006) New regulators in adult neurogenesis and their potential role for repair. Trends Mol Med 12(9):400–405

    PubMed  CAS  Google Scholar 

  62. Ishibashi S, Sakaguchi M, Kuroiwa T et al (2004) Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res 78(2):215–223

    PubMed  CAS  Google Scholar 

  63. Toda H, Takahashi J, Iwakami N et al (2001) Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 316(1):9–12

    PubMed  CAS  Google Scholar 

  64. Zhang J, Li Y, Chen J et al (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195(1):16–26

    PubMed  CAS  Google Scholar 

  65. Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59(5):735–742

    PubMed  CAS  Google Scholar 

  66. Xiao J, Nan Z, Motooka Y, Low WC (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14(6):722–733

    PubMed  CAS  Google Scholar 

  67. Shen LH, Li Y, Chen J et al (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137(2):393–399

    PubMed  CAS  Google Scholar 

  68. Chen J, Zhang ZG, Li Y et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92(6):692–699

    PubMed  CAS  Google Scholar 

  69. Jiang Q, Zhang ZG, Ding GL et al (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28(3):698–707

    PubMed  Google Scholar 

  70. Shyu WC, Lin SZ, Chiang MF, Su CY, Li H (2006) Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci 26(13):3444–3453

    PubMed  CAS  Google Scholar 

  71. Capitanio JP, Emborg ME (2008) Contributions of non-human primates to neuroscience research. Lancet 371(9618):1126–1135

    PubMed  Google Scholar 

  72. Risedal A, Mattsson B, Dahlqvist P, Nordborg C, Olsson T, Johansson BB (2002) Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull 58(3):315–321

    PubMed  Google Scholar 

  73. Kozlowska H, Jablonka J, Janowski M, Jurga M, Kossut M, Domanska-Janik K (2007) Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 16(3):481–488

    PubMed  Google Scholar 

  74. Horie N, Maag AL, Hamilton SA, Shichinohe H, Bliss TM, Steinberg GK (2008) Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Meth 173(2):286–290

    CAS  Google Scholar 

  75. Hofmeijer J, Veldhuis WB, Schepers J et al (2004) The time course of ischemic damage and cerebral perfusion in a rat model of space-occupying cerebral infarction. Brain Res 1013(1):74–82

    PubMed  CAS  Google Scholar 

  76. Janowski M, Gornicka-Pawlak E, Kozlowska H, Domanska-Janik K, Gielecki J, Lukomska B (2008) Structural and functional characteristic of a model for deep-seated lacunar infarct in rats. J Neurol Sci 273(1–2):40–48

    PubMed  Google Scholar 

  77. Veldhuis WB, van der Stelt M, Delmas F, Gillet B et al (2003) In vivo excitotoxicity induced by ouabain, a Na+/K+-ATPase inhibitor. J Cereb Blood Flow Metab 23(1):62–74

    PubMed  Google Scholar 

  78. Vendrame M, Cassady J, Newcomb J et al (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35(10):2390–2395

    PubMed  CAS  Google Scholar 

  79. Saporta S, Borlongan CV, Sanberg PR (1999) Neural transplantation of human neuroteratocarcinoma (hNT) neurons into ischemic rats. A quantitative dose–response analysis of cell survival and behavioral recovery. Neuroscience 91(2):519–525

    PubMed  CAS  Google Scholar 

  80. Hicks AU, MacLellan CL, Chernenko GA, Corbett D (2008) Long-term assessment of enriched housing and subventricular zone derived cell transplantation after focal ischemia in rats. Brain Res 1231:103–112

    PubMed  CAS  Google Scholar 

  81. Hicks AU, Hewlett K, Windle V et al (2007) Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146(1):31–40

    PubMed  CAS  Google Scholar 

  82. Makinen S, Kekarainen T, Nystedt J et al (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123(1):207–215

    PubMed  Google Scholar 

  83. Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26(12):1465–1478

    PubMed  Google Scholar 

  84. Modo M, Stroemer RP, Tang E, Patel S, Hodges H (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33(9):2270–2278

    PubMed  Google Scholar 

  85. Fischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132(Pt 5):1175–1189

    Google Scholar 

  86. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874–882

    PubMed  Google Scholar 

  87. Kondziolka D, Wechsler L, Goldstein S, Meltzer C et al (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55(4):565–569

    Google Scholar 

  88. Kondziolka D, Steinberg GK, Wechsler L et al (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103(1):38–45

    PubMed  Google Scholar 

  89. Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M (2009) The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials 30(16):2985–2994

    PubMed  CAS  Google Scholar 

  90. Kelly S, Bliss TM, Shah AK et al (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101(32):11839–11844

    PubMed  CAS  Google Scholar 

  91. Li L, Jiang Q, Zhang L et al (2006) Ischemic cerebral tissue response to subventricular zone cell transplantation measured by iterative self-organizing data analysis technique algorithm. J Cereb Blood Flow Metab 26(11):1366–1377

    PubMed  Google Scholar 

  92. Walker PA, Harting MT, Shah SK et al (2010) Progenitor cell therapy for the treatment of central nervous system injury: a review of the state of current clinical trials. Stem Cells Int 2010:369578

    Google Scholar 

  93. Banerjee S, Williamson D, Habib N, Gordon M, Chataway J (2011) Human stem cell therapy in ischaemic stroke: a review. Age Ageing 40(1):7–13

    PubMed  Google Scholar 

  94. Ewing-Cobbs L, Barnes MA, Fletcher JM (2003) Early brain injury in children: development and reorganization of cognitive function. Dev Neuropsychol 24(2–3):669–704

    PubMed  Google Scholar 

  95. Richardson RM, Sun D, Bullock MR (2007) Neurogenesis after traumatic brain injury. Neurosurg Clin N Am 18(1):169–181, xi

    PubMed  Google Scholar 

  96. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37(2):267–274

    PubMed  Google Scholar 

  97. Shear DA, Tate MC, Archer DR et al (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026(1):11–22

    PubMed  CAS  Google Scholar 

  98. Boockvar JA, Schouten J, Royo N et al (2005) Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery 56(1):163–171

    PubMed  Google Scholar 

  99. Shear DA, Tate CC, Tate MC et al (2011) Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 29(4):215–225

    PubMed  Google Scholar 

  100. Lu D, Sanberg PR, Mahmood A et al (2002) Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant 11(3):275–281

    PubMed  Google Scholar 

  101. Xiong Y, Mahmood A, Chopp M (2009) Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs 14(1):67–84

    PubMed  CAS  Google Scholar 

  102. Zhang ZX, Guan LX, Zhang K, Zhang Q, Dai LJ (2008) A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 10(2):134–139

    PubMed  CAS  Google Scholar 

  103. Walker PA, Letourneau PA, Bedi S, Shah SK, Jimenez F, Charles S Jr - Jr CS (2011) Progenitor cells as remote “bioreactors”: neuroprotection via modulation of the systemic inflammatory response. World J Stem Cells 3(2):9–18

    PubMed  Google Scholar 

  104. Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102(39):14069–14074

    PubMed  CAS  Google Scholar 

  105. Nakamura M, Toyama Y, Okano H (2005) Transplantation of neural stem cells for spinal cord injury. Rinsho Shinkeigaku 45(11):874–876

    PubMed  Google Scholar 

  106. Yan J, Xu L, Welsh AM et al (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 4(2):e39

    PubMed  Google Scholar 

  107. Meletis K, Barnabe-Heider F, Carlen M et al (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182

    PubMed  Google Scholar 

  108. Ohori Y, Yamamoto S, Nagao M et al (2006) Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 26(46):11948–11960

    PubMed  CAS  Google Scholar 

  109. Someya Y, Koda M, Dezawa M et al (2008) Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine 9(6):600–610

    PubMed  Google Scholar 

  110. Wang G, Ao Q, Gong K, Zuo H, Gong Y, Zhang X (2010) Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury. Cell Transplant 19(10):1325–1337

    PubMed  Google Scholar 

  111. Sasaki M, Radtke C, Tan AM et al (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29(47):14932–14941

    PubMed  CAS  Google Scholar 

  112. Hyun JK, Kim HW (2010) Clinical and experimental advances in regeneration of spinal cord injury. J Tissue Eng 2010:650857

    Google Scholar 

  113. Moviglia GA, Fernandez VR, Brizuela JA et al (2006) Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8:202–209

    Google Scholar 

  114. Deda H, Inci MC, Kurekci AE et al (2008) Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 10:565-574

    Google Scholar 

  115. Cristante AF, Barros-Filho TE, Tatsui N (2009) Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 47:733–738

    Google Scholar 

  116. Pal R, Venkataramana NK, Bansal A et al (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11(7):897–911

    Google Scholar 

  117. Kishk NA, Gabr H, Hamdy S et al(2010) Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil. Neural Repair 24: 702–708

    Google Scholar 

  118. Ra JC, Shin IS, Kim SH et al (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20:1297–1308

    Google Scholar 

  119. Callera F, do Nascimento RX (2006) Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 34(2):130–131

    PubMed  Google Scholar 

  120. Yoon SH, Shim YS, Park YH et al (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25(8):2066–2073

    PubMed  Google Scholar 

  121. Chernykh ER, Stupak VV, Muradov GM et al (2007) Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 143(4):543–547

    PubMed  CAS  Google Scholar 

  122. Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M (2009) Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 7(4):241–248

    PubMed  Google Scholar 

  123. Sykova E, Homola A, Mazanec R et al (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15:675–687

    Google Scholar 

  124. Dimitrijevic MR (1989) Restorative neurology of head injury. J Neurotrauma 6(1):25–29

    PubMed  CAS  Google Scholar 

  125. Germano I, Swiss V, Casaccia P (2010) Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link? Neuropharmacology 58(6):903–910

    PubMed  CAS  Google Scholar 

  126. Lee JS, Lee HJ, Moon BH, Song SH et al (2011) Generation of cancerous neural stem cells for­ming glial tumor by oncogenic stimulation. Stem Cell Rev DOI: 10.1007/s12015-011-9280-4 (Abstract)

    Google Scholar 

  127. Wang R, Chadalavada K, Wilshire J, Kowalik U et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    PubMed  CAS  Google Scholar 

  128. Ahmed AU, Thaci B, Alexiades NG, Han Y et al (2011) Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma. Mol Ther 19(9):1714–26

    Google Scholar 

  129. Frank RT, Edmiston M, Kendall SE (2009) Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One 4(12):e8314

    PubMed  Google Scholar 

  130. Frank RT, Najbauer J, Aboody KS (2010) Concise review: stem cells as an emerging platform for antibody therapy of cancer. Stem Cells 28(11):2084–2087

    PubMed  CAS  Google Scholar 

  131. Frank RT, Aboody KS, Najbauer J (2011) Strategies for enhancing antibody delivery to the brain. Biochim Biophys Acta 1816(2):191–198

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wlodek Lopaczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maksymowicz, W., Wojtkiewicz, J., Kozłowska, H., Habich, A., Lopaczynski, W. (2012). The Perspectives of Stem Cell-Based Therapy in Neurological Diseases. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_2

Download citation

Publish with us

Policies and ethics