Skip to main content

Cancer Stem Cell Models and Role in Drug Discovery

  • Chapter
  • First Online:
Stem Cells and Human Diseases
  • 1040 Accesses

Abstract

With the cementing of the cancer stem cell (CSC) concept, cancer ­biology and cancer drug discovery has attained a new avenue to approach cancer from. Studying the hierarchy of tumor tissue organization and how to inhibit the cell that resides at the very top of this hierarchy has opened up a new branch of tumor biology and given the opportunity to develop novel inhibitors that target cancer. With the ­discovery of CSCs in majority of cancer indications there seems to be a universal applicability of the concept. However, the CSC field is still at an early fledgling state and a lot more needs to be done in terms of understanding their emergence, maintenance, role in metastasis and determining the architecture of the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Hajj M, Wicha MS et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  2. Bauerschmitz GJ, Ranki T et al (2008) Tissue-specific promoters active in CD44  +  CD24-/low breast cancer cells. Cancer Res 68(14):5533–5539

    Article  PubMed  CAS  Google Scholar 

  3. Chahroudi A, Chavan R et al (2005) Vaccinia virus tropism for primary hematolymphoid cells is determined by restricted expression of a unique virus receptor. J Virol 79(16):10397–10407

    Article  PubMed  CAS  Google Scholar 

  4. Clarke MF, Dick JE et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  PubMed  CAS  Google Scholar 

  5. Cripe TP, Wang PY et al (2009) Targeting cancer-initiating cells with oncolytic viruses. Mol Ther 17(10):1677–1682

    Article  PubMed  CAS  Google Scholar 

  6. Eriksson M, Guse K et al (2007) Oncolytic adenoviruses kill breast cancer initiating CD44  +  CD24-/low cells. Mol Ther 15(12):2088–2093

    Article  PubMed  CAS  Google Scholar 

  7. Ernst A, Hofmann S et al (2009) Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res 15(21):6541–6550

    Article  PubMed  CAS  Google Scholar 

  8. Galli R, Binda E et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  PubMed  CAS  Google Scholar 

  9. Gibson SE, Schade AE et al (2008) Phospho-STAT5 expression pattern with the MPL W515L mutation is similar to that seen in chronic myeloproliferative disorders with JAK2 V617F. Hum Pathol 39(7):1111–1114

    Article  PubMed  CAS  Google Scholar 

  10. Guo ZS, Thorne SH et al (2008) Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 1785(2):217–231

    PubMed  CAS  Google Scholar 

  11. Hitchcock IS, Chen MM et al (2008) YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation. Blood 112(6):2222–2231

    Article  PubMed  CAS  Google Scholar 

  12. Hoey T, Yen WC et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5(2):168–177

    Article  PubMed  CAS  Google Scholar 

  13. Huang SM, Mishina YM et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620

    Article  PubMed  CAS  Google Scholar 

  14. Ishizawa K, Rasheed ZA et al (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7(3):279–282

    Article  PubMed  CAS  Google Scholar 

  15. Jamieson CH, Weissman IL et al (2004) Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 6(6):531–533

    PubMed  CAS  Google Scholar 

  16. Jiang H, Gomez-Manzano C et al (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414

    Article  PubMed  CAS  Google Scholar 

  17. Kambara H, Okano H et al (2005) An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 65(7):2832–2839

    Article  PubMed  CAS  Google Scholar 

  18. Kanerva A, Zinn KR et al (2003) Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 8(3):449–458

    Article  PubMed  CAS  Google Scholar 

  19. Lee J, Kotliarova S et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403

    Article  PubMed  CAS  Google Scholar 

  20. Li C, Heidt DG et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  21. Li A, Walling J et al (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6(1):21–30

    Article  PubMed  CAS  Google Scholar 

  22. Marcato P, Dean CA et al (2009) Oncolytic reovirus effectively targets breast cancer stem cells. Mol Ther 17(6):972–979

    Article  PubMed  CAS  Google Scholar 

  23. Melkus MW, Estes JD et al (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12(11):1316–1322

    Article  PubMed  CAS  Google Scholar 

  24. Mullendore ME, Koorstra JB et al (2009) Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res 15(7):2291–2301

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen NP, Almeida FS et al (2010) Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev 36(6):485–491

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien CA, Pollett A et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  27. Otsuki A, Patel A et al (2008) Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses. Mol Ther 16(9):1546–1555

    Article  PubMed  CAS  Google Scholar 

  28. Quintana E, Shackleton M et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    Article  PubMed  CAS  Google Scholar 

  29. Ranki T, Kanerva A et al (2007) A heparan sulfate-targeted conditionally replicative adenovirus, Ad5.pk7-Delta24, for the treatment of advanced breast cancer. Gene Ther 14(1):58–67

    Article  PubMed  CAS  Google Scholar 

  30. Reya T, Morrison SJ et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  31. Ribacka C, Hemminki A (2008) Virotherapy as an approach against cancer stem cells. Curr Gene Ther 8(2):88–96

    Article  PubMed  CAS  Google Scholar 

  32. Ribacka C, Pesonen S et al (2008) Cancer, stem cells, and oncolytic viruses. Ann Med 40(7):496–505

    Article  PubMed  CAS  Google Scholar 

  33. Ricci-Vitiani L, Lombardi DG et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  PubMed  CAS  Google Scholar 

  34. Ricci-Vitiani L, Pallini R et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828

    Article  PubMed  CAS  Google Scholar 

  35. Scales SJ, de Sauvage FJ (2009) Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci 30(6):303–312

    Article  PubMed  CAS  Google Scholar 

  36. Schatton T, Murphy GF et al (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349

    Article  PubMed  CAS  Google Scholar 

  37. Short JJ, Curiel DT (2009) Oncolytic adenoviruses targeted to cancer stem cells. Mol Cancer Ther 8(8):2096–2102

    Article  PubMed  CAS  Google Scholar 

  38. Singh SK, Hawkins C et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  PubMed  CAS  Google Scholar 

  39. Skog J, Edlund K et al (2007) Adenoviruses 16 and CV23 efficiently transduce human low-passage brain tumor and cancer stem cells. Mol Ther 15(12):2140–2145

    Article  PubMed  CAS  Google Scholar 

  40. Sundell IB, Koka PS (2006) Chimeric SCID-hu model as a human hematopoietic stem cell host that recapitulates the effects of HIV-1 on bone marrow progenitors in infected patients. J Stem Cells 1(4):283–300

    PubMed  Google Scholar 

  41. Teo JL, Kahn M (2010) The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 62(12):1149–1155

    Article  PubMed  CAS  Google Scholar 

  42. Todaro M, Iovino F et al (2010) Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 70(21):8874–8885

    Article  PubMed  CAS  Google Scholar 

  43. Uckun FM, Sather H et al (1995) Leukemic cell growth in SCID mice as a predictor of relapse in high-risk B-lineage acute lymphoblastic leukemia. Blood 85(4):873–878

    PubMed  CAS  Google Scholar 

  44. Vescovi AL, Parati EA et al (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156(1):71–83

    Article  PubMed  CAS  Google Scholar 

  45. Von Hoff DD, LoRusso PM et al (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361(12):1164–1172

    Article  Google Scholar 

  46. Wakimoto H, Kesari S et al (2009) Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 69(8):3472–3481

    Article  PubMed  CAS  Google Scholar 

  47. Wang R, Chadalavada K et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    Article  PubMed  CAS  Google Scholar 

  48. Whyte P, Buchkovich KJ et al (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334(6178):124–129

    Article  PubMed  CAS  Google Scholar 

  49. Wierenga AT, Vellenga E et al (2008) Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol Cell Biol 28(21):6668–6680

    Article  PubMed  CAS  Google Scholar 

  50. Yang ZF, Ho DW et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153–166

    Article  PubMed  CAS  Google Scholar 

  51. Zhang S, Balch C et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    Article  PubMed  CAS  Google Scholar 

  52. Zhang M, Dias P et al (2010) Induction characterization and targeting of human hematopoietic cancer stem cells. J Stem Cells 5(1):1–7

    PubMed  Google Scholar 

  53. Zou GM (2007) Cancer stem cells in leukemia, recent advances. J Cell Physiol 213(2):440–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aladar Szalay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Duggal, R., Minev, B., Vescovi, A., Szalay, A. (2012). Cancer Stem Cell Models and Role in Drug Discovery. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_10

Download citation

Publish with us

Policies and ethics