Skip to main content

Preparation and Structural Characterization of Pre-fibrillar Assemblies of Amyloidogenic Proteins

  • Chapter
  • First Online:

Abstract

Accumulating evidence supports the hypothesis that early, soluble, toxic oligomers, rather than the mature fibrils, relate to diverse amyloid disorders and may represent the primary cytotoxic agents in synaptic dysfunction and death in neurodegenerative diseases. Since the “amyloid cascade hypothesis” has been ­investigated for the amyloid β-protein (Aβ), many groups have reported toxic pre-fibrillar assemblies that are involved in diverse amyloid-related diseases. Much experimental evidence suggests that fibrils formed in vitro strongly resemble those in diseased tissues. For example, protofibrillar intermediates detected in vitro and later in vivo exhibit strikingly similar structural and neurotoxic properties. Taken together, these observations indicate that the structural and mechanistic evidences resulting from in vitro studies pertain to the role of protein fibrillogenesis in neurodegenerative diseases. Thus, extensive research has been devoted to produce in vitro oligomers that resemble the original species in vivo and to develop innovative methodologies to characterize the structure and biological activities of these oligomeric assemblies. In this chapter, we will discuss the methods used for structural characterization of oligomeric assemblies. In addition, we will review methods used for preparing different amyloid-like oligomers in vitro.

Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acero G, Manoutcharian K, Vasilevko V, Munguia ME, Govezensky T, Coronas G, Luz-Madrigal A, Cribbs DH, Gevorkian G (2009) Immunodominant epitope and properties of pyroglutamate-modified Aβ-specific antibodies produced in rabbits. J Neuroimmunol 213:39–46

    PubMed  CAS  Google Scholar 

  • Ahmad A, Uversky VN, Hong D, Fink AL (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675

    PubMed  CAS  Google Scholar 

  • Alarcon JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E (2006) Ion channel formation by Alzheimer’s disease amyloid β-peptide (Aβ40) in unilamellar liposomes is determined by anionic phospholipids. Peptides 27:95–104

    PubMed  CAS  Google Scholar 

  • Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256

    PubMed  CAS  Google Scholar 

  • Anguiano M, Nowak RJ, Lansbury PT Jr (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343

    PubMed  CAS  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid β-protein [AβP-(1–40)] in bilayer membranes. Proc Natl Acad Sci USA 90:10573–10577

    PubMed  CAS  Google Scholar 

  • Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid-β protein forms calcium ­channels in bilayer membranes: blockade by tromethamine and aluminium. Proc Natl Acad Sci USA 90:567–571

    PubMed  CAS  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1994) The ability of amyloid β-protein [AβP(1–40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer’s disease. Ann NY Acad Sci 747:256–266

    PubMed  CAS  Google Scholar 

  • Avidan-Shpalter C, Gazit E (2006) The early stages of amyloid formation: biophysical and structural characterization of human calcitonin pre-fibrillar assemblies. Amyloid 13:216–225

    PubMed  CAS  Google Scholar 

  • Baglioni S, Casamenti F, Bucciantini M, Luheshi LM, Taddei N, Chiti F, Dobson CM, Stefani M (2006) Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci 26:8160–8167

    PubMed  CAS  Google Scholar 

  • Bahadi R, Farrelly PV, Kenna BL, Kourie JI, Tagliavini F, Forloni G, Salmona M (2003) Channels formed with a mutant prion protein PrP(82–146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am J Physiol Cell Physiol 285:C862–C872

    PubMed  CAS  Google Scholar 

  • Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M, Bitner RS, Harlan J, Barlow E, Ebert U, Hillen H (2005) Globular amyloid β-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95:834–847

    PubMed  CAS  Google Scholar 

  • Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277:21140–21148

    PubMed  CAS  Google Scholar 

  • Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea J-E, Ruotolo BT, Robinson CV, Bowers MT (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the etiology of Alzheimer’s disease. Nat Chem 1:326–331

    PubMed  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170

    PubMed  CAS  Google Scholar 

  • Billings LM, Green KN, Mcgaugh JL, Laferla FM (2007) Learning decreases Aβ*56 and tau pathology and ameliorates behavioral decline in 3  ×  Tg-AD mice. J Neurosci 27:751–761

    PubMed  CAS  Google Scholar 

  • Bitan G, Lomakin A, Teplow DB (2001) Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276:35176–35184

    PubMed  CAS  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003a) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335

    PubMed  CAS  Google Scholar 

  • Bitan G, Tarus B, Vollers SS, Lashuel HA, Condron MM, Straub JE, Teplow DB (2003b) A molecular switch in amyloid assembly: Met35 and amyloid β-protein oligomerization. J Am Chem Soc 125:15359–15365

    PubMed  CAS  Google Scholar 

  • Bitan G, Vollers SS, Teplow DB (2003c) Elucidation of primary structure elements controlling early amyloid β-protein oligomerization. J Biol Chem 278:34882–34889

    PubMed  CAS  Google Scholar 

  • Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers what you see is not always what you get. Amyloid 12:88–95

    PubMed  Google Scholar 

  • Cappai R, Leck SL, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19:1377–1379

    PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    PubMed  CAS  Google Scholar 

  • Caughey B, Baron GS, Chesebro B, Jeffrey M (2009) Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 78:177–204

    PubMed  CAS  Google Scholar 

  • Chaney MO, Webster SD, Kuo YM, Roher AE (1998) Molecular modeling of the Aβ1–42 peptide from Alzheimer’s disease. Protein Eng 11:761–767

    PubMed  CAS  Google Scholar 

  • Chiesa R, Harris DA (2001) Prion diseases: what is the neurotoxic molecule? Neurobiol Dis 8:743–763

    PubMed  CAS  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Aβ(1–42) into globular neurotoxins. Biochemistry 42:12749–12760

    PubMed  CAS  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    PubMed  CAS  Google Scholar 

  • Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819

    PubMed  CAS  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT Jr (2000a) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000b) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    PubMed  CAS  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294:1346–1349

    PubMed  CAS  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, Ladu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    PubMed  CAS  Google Scholar 

  • Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of α-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232

    PubMed  CAS  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    PubMed  CAS  Google Scholar 

  • Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr (2002) Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41:10209–10217

    PubMed  CAS  Google Scholar 

  • Ding H, Wong PT, Lee EL, Gafni A, Steel DG (2009) Determination of the oligomer size of amyloidogenic protein β-amyloid(1–40) by single-molecule spectroscopy. Biophys J 97:912–921

    PubMed  CAS  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356:133–144

    PubMed  CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    PubMed  CAS  Google Scholar 

  • Dukes KD, Rodenberg CF, Lammi RK (2008) Monitoring the earliest amyloid-β oligomers via quantized photobleaching of dye-labeled peptides. Anal Biochem 382:29–34

    PubMed  CAS  Google Scholar 

  • Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB (1994) Theoretical models of the ion channel structure of amyloid β-protein. Biophys J 67:2137–2145

    PubMed  CAS  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Nagala S, Patel BP, Austen BM (2001a) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310:157–168

    PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Sheridan JM, Sidera C, Siligardi G, Hussain R, Haris PI, Austen BM (2001b) Effect of the disulfide bridge and the C-terminal extension on the oligomerization of the amyloid peptide ABri implicated in familial British dementia. Biochemistry 40:3449–3457

    PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425

    PubMed  CAS  Google Scholar 

  • Finder VH, Glockshuber R (2007) Amyloid-β aggregation. Neurodegener Dis 4:13–27

    PubMed  CAS  Google Scholar 

  • Frydman-Marom A, Rechter M, Shefler I, Bram Y, Shalev DE, Gazit E (2009) Cognitive-performance recovery of Alzheimer’s disease model mice by modulation of early soluble amyloidal assemblies. Angew Chem Int Ed Engl 48:1981–1986

    PubMed  CAS  Google Scholar 

  • Funato H, Enya M, Yoshimura M, Morishima-Kawashima M, Ihara Y (1999) Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am J Pathol 155:23–28

    PubMed  CAS  Google Scholar 

  • Garzon-Rodriguez W, Sepulveda-Becerra M, Milton S, Glabe CG (1997) Soluble amyloid Aβ-(1–40) exists as a stable dimer at low concentrations. J Biol Chem 272:21037–21044

    PubMed  CAS  Google Scholar 

  • Gazit E (2004) The role of prefibrillar assemblies in the pathogenesis of amyloid diseases. Drugs Future 29:613–619

    CAS  Google Scholar 

  • Gellermann GP, Byrnes H, Striebinger A, Ullrich K, Mueller R, Hillen H, Barghorn S (2008) Aβ-globulomers are formed independently of the fibril pathway. Neurobiol Dis 30:212–220

    PubMed  CAS  Google Scholar 

  • Ghiso J, Vidal R, Rostagno A, Mead S, Revesz T, Plant G, Frangione B (2000) A newly formed amyloidogenic fragment due to a stop codon mutation causes familial British dementia. Ann NY Acad Sci 903:129–137

    PubMed  CAS  Google Scholar 

  • Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115–E119

    PubMed  CAS  Google Scholar 

  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422

    PubMed  CAS  Google Scholar 

  • Gorman PM, Yip CM, Fraser PE, Chakrabartty A (2003) Alternate aggregation pathways of the Alzheimer β-amyloid peptide: Aβ association kinetics at endosomal pH. J Mol Biol 325:743–757

    PubMed  CAS  Google Scholar 

  • Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NH, Radford SE (2005) Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J Mol Biol 351:850–864

    PubMed  CAS  Google Scholar 

  • Green JD, Goldsbury C, Kistler J, Cooper GJ, Aebi U (2004) Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation. J Biol Chem 279:12206–12212

    PubMed  CAS  Google Scholar 

  • Grudzielanek S, Smirnovas V, Winter R (2006) Solvation-assisted pressure tuning of insulin fibrillation: from novel aggregation pathways to biotechnological applications. J Mol Biol 356:497–509

    PubMed  CAS  Google Scholar 

  • Gurlo T, Ryazantsev S, Huang CJ, Yeh MW, Reber HA, Hines OJ, O’brien TD, Glabe CG, Butler PC (2010) Evidence for proteotoxicity in β cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol 176:861–869

    PubMed  CAS  Google Scholar 

  • Gusella JF, Macdonald ME (2000) Molecular genetics: unmasking polyglutamine triggers in ­neurodegenerative disease. Nat Rev Neurosci 1:109–115

    PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    PubMed  CAS  Google Scholar 

  • Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    PubMed  CAS  Google Scholar 

  • Harper JD, Lieber CM, Lansbury PT Jr (1997a) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein. Chem Biol 4:951–959

    PubMed  CAS  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT (1997b) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125

    PubMed  CAS  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT Jr (1999) Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry 38:8972–8980

    PubMed  CAS  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    PubMed  CAS  Google Scholar 

  • Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, Keller PM, Yeager M, Wang H, Shughrue P, Kinney G, Joyce JG (2006) Solution state characterization of amyloid β-derived diffusible ligands. Biochemistry 45:15157–15167

    PubMed  CAS  Google Scholar 

  • Hong DP, Fink AL, Uversky VN (2008) Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383:214–223

    PubMed  CAS  Google Scholar 

  • Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA 100:6370–6375

    PubMed  CAS  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39:8347–8352

    PubMed  CAS  Google Scholar 

  • Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmuller G, Foguel D, Silva JL (2003) Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42:9022–9027

    PubMed  CAS  Google Scholar 

  • Jain S, Udgaonkar JB (2010) Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein. Biochemistry 49:7615–7624

    PubMed  CAS  Google Scholar 

  • Jang H, Arce FT, Capone R, Ramachandran S, Lal R, Nussinov R (2009) Misfolded amyloid ion channels present mobile β-sheet subunits in contrast to conventional ion channels. Biophys J 97:3029–3037

    PubMed  CAS  Google Scholar 

  • Janson J, Ashley RH, Harrison D, Mcintyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498

    PubMed  CAS  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the β amyloid protein is ­critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    PubMed  CAS  Google Scholar 

  • Johansson AS, Garlind A, Berglind-Dehlin F, Karlsson G, Edwards K, Gellerfors P, Ekholm-Pettersson F, Palmblad J, Lannfelt L (2007) Docosahexaenoic acid stabilizes soluble amyloid-β protofibrils and sustains amyloid-β-induced neurotoxicity in vitro. FEBS J 274:990–1000

    PubMed  CAS  Google Scholar 

  • Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC (2002) The channel hypothesis of Alzheimer’s disease: current status. Peptides 23:1311–1315

    PubMed  CAS  Google Scholar 

  • Kawahara M, Arispe N, Kuroda Y, Rojas E (1997) Alzheimer’s disease amyloid β-protein forms Zn2+-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J 73:67–75

    PubMed  CAS  Google Scholar 

  • Kawarabayashi T, Shoji M, Younkin LH, Wen-Lang L, Dickson DW, Murakami T, Matsubara E, Abe K, Ashe KH, Younkin SG (2004) Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 24:3801–3809

    PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, Mcintire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    PubMed  CAS  Google Scholar 

  • Kayed R, Sokolov Y, Edmonds B, Mcintire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    PubMed  CAS  Google Scholar 

  • Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284:4230–4237

    PubMed  CAS  Google Scholar 

  • Kheterpal I, Zhou S, Cook KD, Wetzel R (2000) Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc Natl Acad Sci USA 97:13597–13601

    PubMed  CAS  Google Scholar 

  • Kim HJ, Chae SC, Lee DK, Chromy B, Lee SC, Park YC, Klein WL, Krafft GA, Hong ST (2003) Selective neuronal degeneration induced by soluble oligomeric amyloid β protein. FASEB J 17:118–120

    PubMed  CAS  Google Scholar 

  • Kirkitadze MD, Kowalska A (2005) Molecular mechanisms initiating amyloid β-fibril formation in Alzheimer’s disease. Acta Biochim Pol 52:417–423

    PubMed  CAS  Google Scholar 

  • Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69:567–577

    PubMed  CAS  Google Scholar 

  • Klein WL (2002) Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352

    PubMed  CAS  Google Scholar 

  • Klein WL, Stine WB Jr, Teplow DB (2004) Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol Aging 25:569–580

    PubMed  CAS  Google Scholar 

  • Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508

    PubMed  CAS  Google Scholar 

  • Kourie JI, Kenna BL, Tew D, Jobling MF, Curtain CC, Masters CL, Barnham KJ, Cappai R (2003) Copper modulation of ion channels of PrP[106–126] mutant prion peptide fragments. J Membr Biol 193:35–45

    PubMed  CAS  Google Scholar 

  • Lafaye P, Achour I, England P, Duyckaerts C, Rougeon F (2009) Single-domain antibodies recognize selectively small oligomeric forms of amyloid β, prevent Aβ-induced neurotoxicity and inhibit fibril formation. Mol Immunol 46:695–704

    PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    PubMed  CAS  Google Scholar 

  • Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Lansbury PT Jr (2006) Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39:167–201

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr (2002a) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002b) α-­Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular ­protofibrils. J Mol Biol 322:1089–1102

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, Lansbury PT Jr (2003) Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332:795–808

    PubMed  CAS  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    PubMed  CAS  Google Scholar 

  • Leong SL, Cappai R, Barnham KJ, Pham CL (2009a) Modulation of α-synuclein aggregation by dopamine: a review. Neurochem Res 34:1838–1846

    PubMed  CAS  Google Scholar 

  • Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE, Barnham KJ, Cappai R (2009b) Formation of dopamine-mediated α-synuclein soluble oligomers requires methionine oxidation. Free Radic Biol Med 46:1328–1337

    PubMed  CAS  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  Google Scholar 

  • Li J, Zhu M, Manning-Bog AB, Di Monte DA, Fink AL (2004) Dopamine and L-DOPA disaggregate amyloid fibrils: implications for Parkinson’s and Alzheimer’s disease. FASEB J 18:962–964

    PubMed  CAS  Google Scholar 

  • Lin MX, Mizabekov T, Kagan BL (1997) Channel formation by a neurotoxic prion protein fragment. J Biol Chem 272:44–47

    PubMed  CAS  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    PubMed  CAS  Google Scholar 

  • Lomakin A, Teplow DB (2006) Quasielastic light scattering study of amyloid β-protein fibril formation. Protein Pept Lett 13:247–254

    PubMed  CAS  Google Scholar 

  • Lomakin A, Teplow DB, Benedek GB (2005) Quasielastic light scattering for protein assembly studies. Methods Mol Biol 299:153–174

    PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  • Ma J, Lindquist S (2002) Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298:1785–1788

    PubMed  CAS  Google Scholar 

  • Maji SK, Amsden JJ, Rothschild KJ, Condron MM, Teplow DB (2005) Conformational dynamics of amyloid β-protein assembly probed using intrinsic fluorescence. Biochemistry 44:13365–13376

    PubMed  CAS  Google Scholar 

  • Malisauskas M, Zamotin V, Jass J, Noppe W, Dobson CM, Morozova-Roche LA (2003) Amyloid protofilaments from the calcium-binding protein equine lysozyme: formation of ring and linear structures depends on pH and metal ion concentration. J Mol Biol 330:879–890

    PubMed  CAS  Google Scholar 

  • Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G, Parsons CG, Gupta S, Banerjee P, Laferla FM (2010) Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am J Pathol 176:870–880

    PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    PubMed  CAS  Google Scholar 

  • Masuda M, Hasegawa M, Nonaka T, Oikawa T, Yonetani M, Yamaguchi Y, Kato K, Hisanaga S, Goedert M (2009) Inhibition of α-synuclein fibril assembly by small molecules: analysis using epitope-specific antibodies. FEBS Lett 583:787–791

    PubMed  CAS  Google Scholar 

  • Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, Selkoe DJ, Ince PG, Walsh DM (2010) The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 133:1328–1341

    PubMed  Google Scholar 

  • Mclean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    PubMed  CAS  Google Scholar 

  • Meli G, Visintin M, Cannistraci I, Cattaneo A (2009) Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer’s amyloid-β oligomers. J Mol Biol 387:584–606

    PubMed  CAS  Google Scholar 

  • Monoi H (1995) New tubular single-stranded helix of poly-L-amino acids suggested by molecular mechanics calculations: I. Homopolypeptides in isolated environments. Biophys J 69:1130–1141

    PubMed  CAS  Google Scholar 

  • Monoi H, Futaki S, Kugimiya S, Minakata H, Yoshihara K (2000) Poly-L-glutamine forms cation channels: relevance to the pathogenesis of the polyglutamine diseases. Biophys J 78:2892–2899

    PubMed  CAS  Google Scholar 

  • Moore RA, Hayes SF, Fischer ER, Priola SA (2007) Amyloid formation via supramolecular ­peptide assemblies. Biochemistry 46:7079–7087

    PubMed  CAS  Google Scholar 

  • Morozova-Roche LA, Zamotin V, Malisauskas M, Ohman A, Chertkova R, Lavrikova MA, Kostanyan IA, Dolgikh DA, Kirpichnikov MP (2004) Fibrillation of carrier protein albebetin and its biologically active constructs. Multiple oligomeric intermediates and pathways. Biochemistry 43:9610–9619

    PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, Mcconlogue L (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Nayak PK, Udgaonkar JB, Krishnamoorthy G (2006) Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics. J Mol Biol 358:935–942

    PubMed  CAS  Google Scholar 

  • Murali J, Jayakumar R (2005) Spectroscopic studies on native and protofibrillar insulin. J Struct Biol 150:180–189

    PubMed  CAS  Google Scholar 

  • Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282:10311–10324

    PubMed  CAS  Google Scholar 

  • Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV (2000) Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J 79:1053–1065

    PubMed  CAS  Google Scholar 

  • Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat Neurosci 4:887–893

    PubMed  CAS  Google Scholar 

  • Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid β oligomers (Aβ1–42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797

    PubMed  CAS  Google Scholar 

  • Noguchi A, Matsumura S, Dezawa M, Tada M, Yanazawa M, Ito A, Akioka M, Kikuchi S, Sato M, Ideno S, Noda M, Fukunari A, Muramatsu S, Itokazu Y, Sato K, Takahashi H, Teplow DB, Nabeshima Y, Kakita A, Imahori K, Hoshi M (2009) Isolation and characterization of patient-derived, toxic, high mass amyloid β-protein (Aβ) assembly from Alzheimer disease brains. J Biol Chem 284:32895–32905

    PubMed  CAS  Google Scholar 

  • Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of α-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219

    PubMed  CAS  Google Scholar 

  • O’connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein-protein interactions by NMR spectroscopy. Proteomics 9:5224–5232

    PubMed  Google Scholar 

  • Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, Rozovsky I, Stine WB, Snyder SW, Holzman TF, Krafft GA, Finch CE (1995) Clusterin (apoJ) alters the aggregation of amyloid β-peptide (Aβ1–42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Exp Neurol 136:22–31

    PubMed  CAS  Google Scholar 

  • Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M (2010) Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Biol 6:225–230

    PubMed  CAS  Google Scholar 

  • Ono K, Condron MM, Teplow DB (2009) Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci USA 106:14745–14750

    PubMed  CAS  Google Scholar 

  • Pham CL, Leong SL, Ali FE, Kenche VB, Hill AF, Gras SL, Barnham KJ, Cappai R (2009) Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-­pathway and off-pathway aggregation of α-synuclein in a pH-dependent manner. J Mol Biol 387:771–785

    PubMed  CAS  Google Scholar 

  • Pillot T, Lins L, Goethals M, Vanloo B, Baert J, Vandekerckhove J, Rosseneu M, Brasseur R (1997) The 118–135 peptide of the human prion protein forms amyloid fibrils and induces liposome fusion. J Mol Biol 274:381–393

    PubMed  CAS  Google Scholar 

  • Pillot T, Drouet B, Pincon-Raymond M, Vandekerckhove J, Rosseneu M, Chambaz J (2000) A nonfibrillar form of the fusogenic prion protein fragment [118–135] induces apoptotic cell death in rat cortical neurons. J Neurochem 75:2298–2308

    PubMed  CAS  Google Scholar 

  • Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, Selkoe DJ (1995) Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270:9564–9570

    PubMed  CAS  Google Scholar 

  • Podlisny MB, Walsh DM, Amarante P, Ostaszewski BL, Stimson ER, Maggio JE, Teplow DB, Selkoe DJ (1998) Oligomerization of endogenous and synthetic amyloid β-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37:3602–3611

    PubMed  CAS  Google Scholar 

  • Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA (2002) Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 277:41032–41037

    PubMed  CAS  Google Scholar 

  • Porat Y, Kolusheva S, Jelinek R, Gazit E (2003) The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry 42:10971–10977

    PubMed  CAS  Google Scholar 

  • Porat Y, Mazor Y, Efrat S, Gazit E (2004) Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 43:14454–14462

    PubMed  CAS  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432

    PubMed  CAS  Google Scholar 

  • Rahimi F, Shanmugam A, Bitan G (2008) Structure–function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders. Curr Alzheimer Res 5:319–341

    PubMed  CAS  Google Scholar 

  • Redecke L, Von Bergen M, Clos J, Konarev PV, Svergun DI, Fittschen UE, Broekaert JA, Bruns O, Georgieva D, Mandelkow E, Genov N, Betzel C (2007) Structural characterization of β-sheeted oligomers formed on the pathway of oxidative prion protein aggregation in vitro. J Struct Biol 157:308–320

    PubMed  CAS  Google Scholar 

  • Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, Lesné S, Ladu MJ, Walsh DM, Ashe KH, Cleary JP (2011) Cognitive effects of cell-derived and synthetically derived Aβ oligomers. Neurobiol Aging 32:1784–1794

    Google Scholar 

  • Rekas A, Knott RB, Sokolova A, Barnham KJ, Perez KA, Masters CL, Drew SC, Cappai R, Curtain CC, Pham CL (2010) The structure of dopamine induced α-synuclein oligomers. Eur Biophys J 39:1407–1419

    PubMed  CAS  Google Scholar 

  • Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    PubMed  CAS  Google Scholar 

  • Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp LJ, Woods AS, Cotter RJ, Tuohy JM, Krafft GA, Bonnell BS, Emmerling MR (1996) Morphology and toxicity of Aβ-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271:20631–20635

    PubMed  CAS  Google Scholar 

  • Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    PubMed  CAS  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373–379

    PubMed  CAS  Google Scholar 

  • Sandberg A, Luheshi LM, Sollvander S, Pereira De Barros T, Macao B, Knowles TP, Biverstal H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Hard T (2010) Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering. Proc Natl Acad Sci USA 107:15595–15600

    PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, Mcfarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–457

    PubMed  CAS  Google Scholar 

  • Schauerte JA, Wong PT, Wisser KC, Ding H, Steel DG, Gafni A (2010) Simultaneous single-molecule fluorescence and conductivity studies reveal distinct classes of Aβ species on lipid bilayers. Biochemistry 49:3031–3039

    PubMed  CAS  Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321

    PubMed  CAS  Google Scholar 

  • Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37:583–595

    PubMed  CAS  Google Scholar 

  • Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261

    PubMed  CAS  Google Scholar 

  • Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128:637–647

    PubMed  CAS  Google Scholar 

  • Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M, Lutsch G, Moss DA, Gast K, Naumann D (2003) Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein. J Biol Chem 278:40481–40492

    PubMed  CAS  Google Scholar 

  • Sreerama N, Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383:318–351

    PubMed  CAS  Google Scholar 

  • Srinivasan R, Jones EM, Liu K, Ghiso J, Marchant RE, Zagorski MG (2003) pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 333:1003–1023

    PubMed  CAS  Google Scholar 

  • Srinivasan R, Marchant RE, Zagorski MG (2004) ABri peptide associated with familial British dementia forms annular and ring-like protofibrillar structures. Amyloid 11:10–13

    PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into ­protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    PubMed  CAS  Google Scholar 

  • Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17:345–356

    PubMed  CAS  Google Scholar 

  • Teplow DB (1998) Structural and kinetic features of amyloid β-protein fibrillogenesis. Amyloid 5:121–142

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, Deteresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    PubMed  CAS  Google Scholar 

  • Uetrecht C, Rose RJ, Van Duijn E, Lorenzen K, Heck AJ (2010) Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 39:1633–1655

    PubMed  CAS  Google Scholar 

  • Urbanc B, Betnel M, Cruz L, Bitan G, Teplow DB (2010) Elucidation of amyloid β-protein oligomerization mechanisms: discrete molecular dynamics study. J Am Chem Soc 132:4266–4280

    PubMed  CAS  Google Scholar 

  • Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5:260–287

    PubMed  CAS  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    PubMed  CAS  Google Scholar 

  • Van Rooijen BD, Van Leijenhorst-Groener KA, Claessens MM, Subramaniam V (2009) Tryptophan fluorescence reveals structural features of α-synuclein oligomers. J Mol Biol 394:826–833

    PubMed  Google Scholar 

  • Vestergaard B, Groenning M, Roessle M, Kastrup JS, Van De Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5:e134

    PubMed  Google Scholar 

  • Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB (1993) Characterization of β-amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968

    PubMed  CAS  Google Scholar 

  • Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar α-synuclein is ­sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602

    PubMed  CAS  Google Scholar 

  • Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819

    PubMed  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2007) Aβ oligomers—a decade of discovery. J Neurochem 101:1172–1184

    PubMed  CAS  Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β-protein ­fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    PubMed  CAS  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    PubMed  CAS  Google Scholar 

  • Walsh P, Yau J, Simonetti K, Sharpe S (2009) Morphology and secondary structure of stable β-­oligomers formed by amyloid peptide PrP(106–126). Biochemistry 48:5779–5781

    PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    PubMed  CAS  Google Scholar 

  • Wang XP, Zhang JH, Wang YJ, Feng Y, Zhang X, Sun XX, Li JL, Du XT, Lambert MP, Yang SG, Zhao M, Klein WL, Liu RT (2009) Conformation-dependent single-chain variable fragment antibodies specifically recognize β-amyloid oligomers. FEBS Lett 583:579–584

    PubMed  CAS  Google Scholar 

  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    PubMed  CAS  Google Scholar 

  • Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 87:5036–5040

    PubMed  CAS  Google Scholar 

  • Westlind-Danielsson A, Arnerup G (2001) Spontaneous in vitro formation of supramolecular β-­amyloid structures, “βamy balls”, by β-amyloid 1–40 peptide. Biochemistry 40:14736–14743

    PubMed  CAS  Google Scholar 

  • Williams AD, Sega M, Chen M, Kheterpal I, Geva M, Berthelier V, Kaleta DT, Cook KD, Wetzel R (2005) Structural properties of Aβ protofibrils stabilized by a small molecule. Proc Natl Acad Sci USA 102:7115–7120

    PubMed  CAS  Google Scholar 

  • Wiltzius JJ, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978

    PubMed  CAS  Google Scholar 

  • Yoshiike Y, Kayed R, Milton SC, Takashima A, Glabe CG (2007) Pore-forming proteins share structural and functional homology with amyloid oligomers. Neuromolecular Med 9:270–275

    PubMed  CAS  Google Scholar 

  • Yoshiike Y, Minai R, Matsuo Y, Chen YR, Kimura T, Takashima A (2008) Amyloid oligomer conformation in a group of natively folded proteins. PLoS One 3:e3235

    PubMed  Google Scholar 

  • Younkin SG (1998) The role of Aβ42 in Alzheimer’s disease. J Physiol Paris 92:289–292

    PubMed  CAS  Google Scholar 

  • Yu L, Edalji R, Harlan JE, Holzman TF, Lopez AP, Labkovsky B, Hillen H, Barghorn S, Ebert U, Richardson PL, Miesbauer L, Solomon L, Bartley D, Walter K, Johnson RW, Hajduk PJ, Olejniczak ET (2009) Structural characterization of a soluble amyloid β-peptide oligomer. Biochemistry 48:1870–1877

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Frydman-Marom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Frydman-Marom, A., Bram, Y., Gazit, E. (2012). Preparation and Structural Characterization of Pre-fibrillar Assemblies of Amyloidogenic Proteins. In: Rahimi, F., Bitan, G. (eds) Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2774-8_3

Download citation

Publish with us

Policies and ethics