Skip to main content

Estimation of Age-Depth Relationships

  • Chapter
  • First Online:
Tracking Environmental Change Using Lake Sediments

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 5))

Abstract

An accurate and precise chronology is an essential pre-requisite for any palaeolimnological study. Chronologies give time-scales for events, and hence for rates for patterns and processes, and make it possible to compare and correlate events in different stratigraphical sequences. Palaeolimnology without chronology is history without dates.

As radiocarbon dating is so widely used in palaeolimnology, this chapter focuses on 14C dating, and its associated errors and the calibration of 14C ages to calibrated 14C ages. Calibration is an essential step before constructing age-depth models, There are several approaches to establishing age-depth relationships – linear interpolation, polynomial regression, splines, mixed-effect models, and Bayesian age-depth modelling involving chronological ordering or wiggle-matching. The critical question of model selection is discussed and future developments are outlined, along with details of available software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Google Scholar 

  • Bennett KD (1983) Devensian late-glacial and Flandrian vegetational history at Hockham Mere, Norfolk, England. I. Pollen percentages and concentrations. New Phytol 95:457–487

    Article  Google Scholar 

  • Bennett KD (1994) Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4:337–348

    Article  Google Scholar 

  • Bennett KD, Fuller JL (2002) Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. The Holocene 12:421–429

    Article  Google Scholar 

  • Birks HJB (2012a) Chapter 2: Overview of numerical methods in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, Dordrecht

    Google Scholar 

  • Birks HJB (2012b) Chapter 11: Stratigraphical data analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, Dordrecht

    Google Scholar 

  • Birks HJB, Jones VJ (2012) Chapter 3: Data-sets. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, Dordrecht

    Google Scholar 

  • Björck S, Wohlfarth B (2001) 14C chronostratigraphic techniques in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 205–245

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Blaauw M (2011) Out of tune: the dangers of aligning proxy archives. Quat Sci Rev. doi:10.1016/j.quascirev.2010.11.012

  • Blaauw M, Christen JA (2005) Radiocarbon peat chronologies and environmental change. Appl Stat 54:805–816

    Article  Google Scholar 

  • Blaauw M, van Geel B, Mauquoy D, van der Plicht J (2004) Radiocarbon wiggle-match dating of peat deposits: advantages and limitations. J Quat Sci 19:177–181

    Article  Google Scholar 

  • Blaauw M, Christen JA, Guilderson TP, Reimer PJ, Brown TA (2005) The problems of radiocarbon dating. Science 308:1551–1553

    Article  CAS  Google Scholar 

  • Blaauw M, Bakker R, Christen JA, Hall VA, van der Plicht J (2007a) A Bayesian framework for age-modelling of radiocarbon-dated peat deposits: case studies from the Netherlands. Radiocarbon 49:357–367

    CAS  Google Scholar 

  • Blaauw M, Christen JA, Mauquoy D, van der Plicht J, Bennett KD (2007b) Testing the timing of radiocarbon-dated events between proxy archives. The Holocene 17:283–288

    Article  Google Scholar 

  • Blaauw M, Wohlfarth B, Christen JA, Ampel L, Veres D, Hughen KA, Preusser F, Svensson A (2010) Were last glacial events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies. J Quat Sci 25:387–394

    Article  Google Scholar 

  • Blockley SPE, Blaauw M, Bronk Ramsey C, van der Plicht J (2007) Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quat Sci Rev 26:1915–1926

    Article  Google Scholar 

  • Boaretto E, Bryant C, Carmi I, Cook G, Gulliksen S, Harkness D, Heinemeier J, McClure J, McGee E, Naysmith P, Possnert G, Scott M, van der Plicht H, van Strydonck M (2002) Summary findings of the Fourth International Radiocarbon Intercomparison (FIRI) (1998–2001). J Quat Sci 17:633–637

    Article  Google Scholar 

  • Bowman S (1990) Interpreting the past: radiocarbon dating. University of California Press, Berkeley

    Google Scholar 

  • Bronk Ramsey C (2007) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Article  Google Scholar 

  • Bronk Ramsey C (2009) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51:1023–1045

    Google Scholar 

  • Buck CE, Millard AR (eds) (2004) Tools for constructing chronologies: crossing disciplinary boundaries. Springer, London

    Google Scholar 

  • Buck CE, Cavanagh WG, Litton CD (1996) Bayesian approach to interpreting archaeological data. Wiley, Chichester

    Google Scholar 

  • Buck CE, Christen JA, James GN (1999) BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeol 7. http://intarch.ac.uk/journal/issue7/buck_toc.html

  • Burr GS (2007) Radiocarbon dating: causes of temporal variations. Encyclopedia of Quaternary Science. Elsevier, Oxford, pp 2931–2941

    Google Scholar 

  • Campbell ID (1996) Power function for interpolating dates in recent sediment. J Paleolimnol 15:107–110

    Article  Google Scholar 

  • Christen JA (1994a) Bayesian interpretation of radiocarbon results. Unpublished PhD thesis, University of Nottingham

    Google Scholar 

  • Christen JA (1994b) Summarizing a set of radiocarbon determinations: a robust approach. Appl Stat 43:489–503

    Google Scholar 

  • Christen JA, Pérez S (2009) A new robust statistical model for radiocarbon data. Radiocarbon 51:1047–1059

    CAS  Google Scholar 

  • Clymo RS (1984) The limits to peat growth. Philos Trans R Soc Lond B 303:605–654

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Elias SA (ed) (2007) Encyclopedia of quaternary science. Elsevier, Oxford

    Google Scholar 

  • Harkness DD, Miller BF, Tipping RM (1997) NERC radiocarbon measurements 1977–1988. Quat Sci Rev 16:925–927

    Article  Google Scholar 

  • Haslett J, Parnell A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. Appl Stat 57:399–418

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  • Heegaard E (2002) The outer border and central border for species-environmental relationships estimated by non-parametric generalised additive models. Ecol Model 157:131–139

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15:612–618

    Article  Google Scholar 

  • Hua Q, Barbetti M (2004) Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298

    CAS  Google Scholar 

  • Ibbetson H (in prep)The environmental history of a high South Pennine landscape: 1284 A.D. to present. PhD thesis to be submitted, Queen’s University Belfast

    Google Scholar 

  • International Study Group (1982) An inter-laboratory comparison of radiocarbon measurements in tree rings. Nature 298:619–623

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  Google Scholar 

  • Jones VJ, Stevenson AC, Battarbee RW (1989) Acidification of lakes in Galloway, southwest Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J Ecol 77:1–23

    Article  CAS  Google Scholar 

  • Kilian MR, van der Plicht J, van Geel B (1995) Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quat Sci Rev 14:959–966

    Article  Google Scholar 

  • Kilian MR, van Geel B, van der Plicht J (2000) 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quat Sci Rev 19:1011–1033

    Article  Google Scholar 

  • King J, Peck J (2001) Use of paleomagnetism in studies of lake sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol, vol 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 371–389

    Google Scholar 

  • Kleijnen JPC (1974) Statistical techniques in simulation. Part I. Dekker, New York

    Google Scholar 

  • Madsen AT, Murray AS, Andersen TJ, Pejrup M (2007) Optical dating of young tidal sediments in the Danish Wadden Sea. Quat Geochronol 2:89–94

    Article  Google Scholar 

  • Maher LJ (1972) Absolute pollen diagram of Redrock Lake, Boulder County, Colorado. Quat Res 2:531–553

    Article  Google Scholar 

  • Maher LJ, Heiri O, Lotter AF (2012) Chapter 6: Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, Dordrecht

    Google Scholar 

  • McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 southern hemisphere calibration 0–11.0 cal kyr BP. Radiocarbon 46:1087–1092

    CAS  Google Scholar 

  • Mook WG (1986) Recommendations/resolutions adopted by the 12th International Radiocarbon Conference. Radiocarbon 28:799

    Google Scholar 

  • Newman WM, Sproull RF (1981) Principles of interactive computer graphics, 2nd edn. McGraw-Hill, Singapore

    Google Scholar 

  • Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1872–1885

    Article  Google Scholar 

  • Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford Science, Oxford

    Google Scholar 

  • Pilcher JR (1991) Radiocarbon dating for the Quaternary scientist. Quat Proc 1:27–33

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    CAS  Google Scholar 

  • Scott EM (2007) Radiocarbon dating: sources of error. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Oxford, pp 2918–2923

    Chapter  Google Scholar 

  • Stevenson AC, Jones VJ, Battarbee RW (1990) The cause of peat erosion: a palaeolimnological approach. New Phytol 114:727–735

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004a) All age-depth models are wrong: but how badly? Quat Sci Rev 23:1–5

    Article  Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004b) The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14:296–298

    Article  Google Scholar 

  • Townsend PD, Parish R, Rowlands AP (2002) A new interpretation of depth-age profiles. Radiat Prot Dosimetry 101:315–319

    Article  CAS  Google Scholar 

  • Twyman RM (2007) Geomagnetic excursions and secular variations. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Oxford, pp 717–720

    Chapter  Google Scholar 

  • Walker M (2005) Quaternary dating methods. Wiley, Chichester

    Google Scholar 

  • Wohlfarth B, Blaauw M, Davies SM, Andersson M, Wastegård S, Hormes A, Possnert G (2006) Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probability methods. J Quat Sci 21:321–334

    Article  Google Scholar 

  • Wohlfarth B, Veres D, Ampel L, Lacourse T, Blaauw M, Preusser F, Andrieu-Ponel V, Kéravis D, Lallier-Vergès E, Björck S, Davies SM, de Beaulieu J-L, Risberg J, Hormes A, Kasper HU, Possnert G, Reille M, Thouveny N, Zander A (2008) Rapid ecosystem response to abrupt climate changes during the last glacial period in Western Europe, 40–16 kyr BP. Geology 36:407–410

    Article  CAS  Google Scholar 

  • Wood SN (2006) Generalized additive models. Chapman & Hall, London

    Google Scholar 

  • Yeloff D, Bennett KD, Blaauw M, Mauquoy D, Sillasoo Ü, van der Plicht J, van Geel B (2006) High precision C-14 dating of Holocene peat deposits: a comparison of Bayesian calibration and wiggle-matching approaches. Quat Geochronol 1:222–235

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Keith Bennett for generously providing the first draft of this chapter. We are also grateful to John Birks, Steve Juggins, Andy Lotter, and Richard Telford for comments on earlier drafts of this chapter. We thank Heather Ibbetson for kindly providing her case study. This is publication no. A336 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Blaauw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blaauw, M., Heegaard, E. (2012). Estimation of Age-Depth Relationships. In: Birks, H., Lotter, A., Juggins, S., Smol, J. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2745-8_12

Download citation

Publish with us

Policies and ethics