Skip to main content

Assessment of bonding, delamination and interfaces

  • Chapter
  • First Online:
  • 1718 Accesses

Part of the book series: RILEM State of the Art Reports ((RILEM State Art Reports,volume 1))

Abstract

Concrete can be viewed as a continuous, homogeneous and isotropic material when the investigation does not consider the microstructure scale (this level will not be considered in this report). “Interface”, as generally defined, is a physical limit between two materials. Such a limit can be viewed as an alteration of the mechanical continuity of concrete, and then, as a possible alteration of its mechanical and physical properties.

Other contributors to this chapter are: O. Abraham, J.P. Balayssac, R. Felicetti, M. Fischli, V. Garnier, P. Gilles, Ch. Maierhofer, A. Moczko, L.D. Olson, J. Popovics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aki T. and Richards P.G. (1980) Quantitative Seismology : Theory and Methods, 2 Volumes, Freeman.

    Google Scholar 

  • Abraham O., Dérobert X. (2003) Non-Destructive Testing of fired tunnel walls: the Mont Blanc tunnel case study, NDT&E international, 36, pp. 411–418.

    Article  Google Scholar 

  • Alt D., Meggers D. (1996) Determination of bridge deck subsurface anomalies by infrared ­thermography and ground penetrating radar: Polk-Quincy viaduct I-70, Topeka, Kansas, Kansas Department of Transportation, Report No. FHWA-KS-96-2, 18p.

    Google Scholar 

  • Al Wardany R., Ballivy G., Rivard P. (2009) Condition assessment of concrete in hydraulic structure by surface wave non-destructive testing, Materials and Structures, 42(3): 251–261.

    Article  Google Scholar 

  • Asano M., Toshiro K., Minoru K., Keitetsu R. (2003) Impact acoustic methods for defects evaluation in concrete, NDT-CE2003, Berlin, 16-19 Sept., 8p

    Google Scholar 

  • ASTM D4788-03: Test method for detecting delaminations in bridge decks using infrared thermography.

    Google Scholar 

  • ASTM, Standard test method for electrical resistivity of pavement membrane system, ASTM D3633-88 (1991).

    Google Scholar 

  • Barnes C.L., Trottier J-F., Forgeron D. (2008) Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects, NDT&E Int., 41:427–433

    Article  Google Scholar 

  • Breysse D., Abraham O. (2005) Méthodologie d’évaluation non destructive de l’état d’altération des ouvrages en béton, Presses de l’ENPC, ISBN 2-85978-405-5, 555p.

    Google Scholar 

  • Cantor, T. and Kneeter, C. (1982) Radar as applied to evaluation of bridge decks, Transp. Res. Rec., 852,37 (in Clemena, 2004)

    Google Scholar 

  • Clark M.R., McCann D.M., Forde M.C. (2003) Application of infrared thermography to the non destructive testing of concrete and masonry bridges, NDT&E Int., 36, pp. 265–275.

    Article  Google Scholar 

  • Clemena, G.G. (1983) Nondestructive inspection of overlaid bridge decks with ground-penetrating radar, Transp. Res. Rec., 899, 21.

    Google Scholar 

  • Clemena G.G. (2004) Short-Pulse Radar Methods, in Handbook on non destructive testing of concrete, Chapter 13, edited by CRC Press, 21p.

    Google Scholar 

  • Colla C., Krause M., Maierhofer C., Höhberger H.J., Sommer H. (2002) Combination of NDT techniques for site investigation of non-ballasted railway tracks, NDT&E Int., 35, pp. 95–105.

    Article  Google Scholar 

  • Davis A.G., Lim M.K., Germann Petersen C. (2005) Rapid and economical evaluation of concrete tunnel linings with impulse response and impulse radar non-destructive methods, NDT&E Int., 38, pp.181–186.

    Article  Google Scholar 

  • Drdacky M., Lesak J., Potential of NDT methods (US, IE, Thermovision, acoustic tracing, laser Doppler interferometry) for plaster delaminations, EC Project “on site for masonry” (coord. Ch. Maierhofer).

    Google Scholar 

  • EN 12504-4, Determination of ultrasonic pulse velocity, Testing concrete- Part4, 14p.

    Google Scholar 

  • Felicetti R. (2008) Assessment of industrial pavement via the impact acoustics method, Sacomatis, Varenna (Italy), 1-2 September 2008, pp. 127–136.

    Google Scholar 

  • Gibson, A., Popovics, J.S. (2005) A Lamb wave basis for impact-echo method analysis, ASCE Journal of Engineering Mechanics. 141 (4), pp. 438–443.

    Article  Google Scholar 

  • Gilles P. (2004) Investigation et réparation des ouvrages atteints de pourrissement de dalles de tablier de ponts, Infra et Diagno’béton, Quebec, 18p.

    Google Scholar 

  • Gilles P., Toussaint P. (2007) Les besoins en CND d’un gestionnaire d’ouvrages d’art, Diagno’béton, Aix en Provence, 4p.

    Google Scholar 

  • Gucunski N., Wang Z., Fang T., Maher A. (20091) Rapid deck condition assessment using 3D visualisation of impact echo data, NDT CE, Nantes, June 30th-July 3rd, 6p.

    Google Scholar 

  • Gucunski N., Feldmann R., Romero F., Kruschwitz S., Abu-Hawash A., Dunn A. (20092) Multimodal Condition Assessment of Bridge Decks by NDE and Its Validation, Proc. 2009 Mid-Continent Transportation Research Symp., Ames, Iowa, 18p.

    Google Scholar 

  • Gucunski N., Kruschwitz S., Feldmann R. (2010) Comparative study of bridge deck deterioration detection and characterization by multiple NDE methods, Structural Faults and Repairs, Edinburgh UK, 12p.

    Google Scholar 

  • Karastathis V.K., Karmis P.N., Drakatos G., Stavrakakis G. (2002) Geophysical methods contributing to the testing of concrete dams: Application at the Marathon Dam, Journal of Applied Geophysics, 50, pp. 247-260.

    Article  Google Scholar 

  • Karray M, Lefebvre G. (2000) Identification and isolation of multiple modes in Rayleigh waves testing methods. In: Proceedings of the use of geophysical methods in construction, sessions of Geo-Denver, ASCE, Denver, pp 80–94.

    Google Scholar 

  • Lataste JF., Sirieix C., Breysse D., Frappa M. (20031) Improvement of electrical resistivity measurement for non destructive evaluation of concrete structures, 2nd Int. RILEM workshop on life and aging management on concrete structures, Paris (F), May 5-6 2003, pp. 93-102 (ISBN 2-912143-36-5).

    Google Scholar 

  • Lataste JF., Sirieix C., Breysse M., Frappa M. (20032) Electrical resistivity measurement applied to cracking assessment of reinforced concrete structures in civil engineering, NDT&E Int., 36(6), ISSN 0963-8695, pp. 383-394.

    Article  Google Scholar 

  • Lin JM., Sansalone M. (1996) Impact Echo studies of interfacial bound quality in concrete: Part I – Effects of unbonded fraction of area, ACI Materials J., pp. 223-232.

    Google Scholar 

  • Lin JM., Sansalone M., Poston R. (1996) Impact Echo studies of interfacial bound quality in concrete: Part II – Effects of Bond tensile strength, ACI Materials J., pp. 318-326.

    Google Scholar 

  • Maierhofer C., Krause M., Wiggenhauser H. (1998) Non-destructive investigation of sluices using radar and ultrasonic impulse echo, NDT&E Int., 31, pp. 421-427.

    Article  Google Scholar 

  • Maierhofer C., Leipold S. (2001) Radar investigation of masonry structures, NDT&E Int., 34, pp. 139-147.

    Article  Google Scholar 

  • Maierhofer C., Brink A., Röllig M., Wiggenhauser H. (2002) Transient thermography for structural investigation of concrete and composites in the near surface region, Infrared Physics &Technologie, 43, pp. 271-278.

    Article  Google Scholar 

  • Maierhofer C., Krause M., Niederleithinger E., Wiggenhauser E. (2003) Non-destructive testing methods at BAM for damage assessment and quality assurance in civil engineering, NDT-CE, Berlin, 16-19 Sept, 14p.

    Google Scholar 

  • Maldague X. (1990) Evaluation non destructive par thermographie infrarouge, IEEE Canadian review, pp.11-15.

    Google Scholar 

  • Maldague X., Marinetti S. (1996) Pulse phase infrared thermography, J. Appl. Phys., Vol. 79, n. 5, 1: 2694-2698.

    Article  Google Scholar 

  • Mayer K., Zimmer A., Langenberg K.J., Kohl C., Maierhofer C. (2003) Nondestructive Evaluation of Embedded Structures in Concrete: Modeling and Imaging, NDT-CE, Berlin, 16-19 Sept, 8p.

    Google Scholar 

  • Meola C., Di Maio R., Roberti N., Carlomagno GM. (2005) Application of infrared thermography and geophysical methods for defect detection in architectural structures, Engineering failure Analysis, 12, pp. 875-892.

    Article  Google Scholar 

  • Naar S. (2005) Aide au diagnostic des ouvrages en béton : couplage de méthodes non destructives, XXIIIe AUGC, 10p.

    Google Scholar 

  • Naar S. (2006) Evaluation non destructive des ouvrages en béton par mesures de résistivité électrique et thermography infrarouge passive, Thèse de l’Université Bordeaux 1, 268p.

    Google Scholar 

  • Nazarian S. (1984) In situ determination of elastic moduli of soil deposits and pavement systems by spectral analysis of surface waves method, Doct. Diss.,The University of Texas at Austin, 486p.

    Google Scholar 

  • Olson, L.D. (2010) Recent Advances in NDE and SHM of Bridge Superstructure with Sonic and Radar Methods, FHWA Bridge 2010 Conference Proceedings, Orlando, Florida 12p.

    Google Scholar 

  • Popovics, J.S., Gibson, A., Hall, K.S., Shin, S.W. (2009) Developments in air-coupled contactless sensing for concrete, in NDTCE09: 7th Int. Symp. on Nondestructive Testing in Civil Engineering, edited by O. Abraham and X. Derobert, LCPC Press, Paris.

    Google Scholar 

  • Ryden, N., Park, C.B., Ulriksen, P., Miller R.D. (2004) Multi-modal approach to seismic pavement testing, Journal of Geotechnical Engineering, 130, (6), pp. 636-635.

    Google Scholar 

  • Sack D.A., Olson L.D. (1995) Advanced NDT methods for evaluating concretes bridges and other structures, NDT&E Int., 28 (6), pp. 349-357.

    Article  Google Scholar 

  • Sangiorgi C., Collop A.C., Thom N.H. (2003) A non destructive impulse hammer for evaluating the bond between asphalt layers in a road pavement, NDT-CE, Berlin, 16-19 Sept., 8p.

    Google Scholar 

  • Sansalone M., Streett W.B., Impact Echo: Non destructive testing of concrete and masonry, Bullbrier Press, Jersey Shore, PA.

    Google Scholar 

  • Sansalone M., Lin JM., Streett W.B. (1997) A procedure for determining P-Wave speed in concrete use impact echo testing using a P-Wave speed measurement technique, ACI Materials Journal, pp. 531-539.

    Google Scholar 

  • Scott M., Rezaizadeh A., De La Haza A., Santos C.G., Moore M., Graybeal B., Washer G. (2003) A comparison of nondestructive evaluation methods for bridge deck assessment, NDT&E Int., 26, pp. 245-255.

    Article  Google Scholar 

  • Simonin JM et Abraham O. (2006) Two complementary seismic method for the detection and the caracterisation of delamination in road structures, NDE CE, St louis.

    Google Scholar 

  • Taffe A., Borchardt K., Wiggenhauser H. (2006) Specimen for the improvement of NDT-methods Design and Construction of a large concrete slab for NDT methods at BAM, P011, NDT-CE, Berlin, 16-19 Sept., 7p

    Google Scholar 

  • Tinkey, Y. and Olson, L.D. (2007) Sensitivity Studies of Grout Defects in Post-tensioned Bridge Ducts Using Impact Echo Scanning Method, Transportation Research Record: Journal of the Transportation Research Board, Volume 2028, pp. 154-162.

    Article  Google Scholar 

  • Tinkey, Y. and Olson, L.D. (2008) Applications and Limitations of Impact Echo Scanning for Void Detection in Post-tensioned Bridge Ducts, Journal Transportation Research Record: Journal of the Transportation Research Board, Volume 2070, pp. 8-12.

    Article  Google Scholar 

  • Tokimatsu K, Tamura S, Kojima H (1992) Effects of multiple modes on Rayleigh wave dispersion, J Geotech Eng ASCE, 118:1529–1543.

    Article  Google Scholar 

  • Uomoto T. (2003) Utilization of NDI to Inspect Internal Defects in Reinforced Concrete Structures, NDT-CE, Berlin, 16-19 Sept., 7p.

    Google Scholar 

  • Weil G.J. (1993) Non destructive of a bridge highway and airport pavement, NDT of concrete in the infrastructure, Deardon, Michigan, pp. 93-105.

    Google Scholar 

  • Weil G.J. (1998) Non destructive Testing of the Concrete Roof Shell at the Seattle Kingdome, SPIE Vol. 3361, pp. 177-187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Lataste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 RILEM

About this chapter

Cite this chapter

Lataste, JF., Rivard, P. (2012). Assessment of bonding, delamination and interfaces. In: Breysse, D. (eds) Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques. RILEM State of the Art Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2736-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2736-6_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2735-9

  • Online ISBN: 978-94-007-2736-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics