Advertisement

Force Distribution for a Walking Robot with Articulated Body

  • I. DorofteiEmail author
  • Ghe Plesu
  • B. Stirbu
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 3)

Abstract

Legged vehicles have attractive capabilities in terms of agility and obstacle avoidance. Also, these platforms are superior for locomotion on soft ground comparing to wheeled or tracked robots, particularly in low gravity. The functional capabilities of a walking robot can be essentially expanded by changing of the body design. It means that climbing over obstacles equal to the geometrical size of the robot could be possible by using a legged platform with articulated body. In this paper, some aspects regarding the force distribution for a hexapod walking robot with articulated body and its active compliance are presented.

Keywords

Walking robot Kinematics Compliance Support force 

Notes

Acknowledgments

The research work reported here was made possible thanks to our stages to the Mechanical Engineering and Robotics Department, free University of Brussels.

References

  1. 1.
    Alexandre, P., “Le Controle Hierarchise d’un Robot Marcheur Hexapode”, These presentee en vue de l’obtention du grade de Docteur en Sciences Appliquees, Universite Libre de Bruxelles, Belgique, Nov. 1996.Google Scholar
  2. 2.
    Alexandre, P., Doroftei, I., Preumont, A., “An autonomous micro walking machine with articulated body”, Proceedings of the 3rd IFAC Symposium on Intelligent Autonomous Vehicles (IAV’98), Editor(s): Salichs, M.A., Halme, A., pp. 557-562.Google Scholar
  3. 3.
    Brazevic P., Iles A., Okhotsimski D., Platonov A., Pavlovsky V., Lensky A. “Development of multilegged walking robot with articulated body”, Proceedings of the 2nd International Conference on Climbing and Walking Robots, CLAWAR’99, Portsmouth, UK, pp. 205-212, 1999, ISBN 1-86058-207-9.Google Scholar
  4. 4.
    Colon, E., Hong, P., Habumuremyi, J.-C., Doroftei, I., Baudoin, Y., Shali, H., Milojevic, D., Weemaels, J., “An Integrated Robotic System for Antipersonnel Mines Detection”, Control Engineering Practice, Pergamon Press, Elsevier Science Ltd., Vol. 10, Issue 11, 2002, pp. 1283-1291, ISSN 0967-0661.Google Scholar
  5. 5.
    Doroftei I., Preumont A., “Development of an Autonomous Micro Walking Machine with Articulated Body”, Proceedings of the 2nd International Conference on Climbing and Walking Robots, CLAWAR ’99, Portsmouth, UK, 14-15 September, 1999, pp. 497-507, ISBN 1-86058-207-9.Google Scholar
  6. 6.
    Gorinevsky, D. M., Schneider, A. Yu., “Force Control in Locomotion of Legged Vehicles over Rigid and Soft Surfaces”, The International Journal of Robotics Research, Vol. 9, No. 2, April 1990.Google Scholar
  7. 7.
    Habumuremyi, J.-C., Doroftei, I., “Mechanical design and MANFIS control of a leg for a new demining walking robot” Proceedings of the 4th International Conference on Climbing and Walking Robots (CLAWAR 2001), Eds. Berns, K.; Dillmann, R., pp.: 457-464, 2001.Google Scholar
  8. 8.
    Halme, A., Hartikainen, K., Kärkkäinen, K., “Terrain adaptive motion and free gait of a six-legged walking machine”, 1st IFAC Workshop on Intelligent Autonomous Vehicles, Southampton, UK, 1993.Google Scholar
  9. 9.
    Kar, D. C., Kurien Issac, K., Jayarajan, K., “Minimum Energy Force Distribution for a Walking Robot”, Journal of Robotic Systems 18(2), pp. 47-54 (2001), ISSN 0741-2223.zbMATHCrossRefGoogle Scholar
  10. 10.
    Klein, C. A., Chung, T., “Force interaction and allocation for the legs of a walking vehicle”, IEEE J Robot Automat 3, 1987., pp. 546-555.CrossRefGoogle Scholar
  11. 11.
    Klein, C. A., Kittivatcharapong, S., “Optimal force distribution for the legs of a walking machine with friction cone constraints, IEEE Trans Robot Automat 6, 1990., pp. 73-85.Google Scholar
  12. 12.
    Knoth, A., March of the Insectoids, International Defense Review, No.11, pp. 55-58, 1994.Google Scholar
  13. 13.
    Kumar, V., Waldron, K. J., “Force distribution in walking vehicles”, ASME J Mech Des 112, 1990., pp. 90-99.CrossRefGoogle Scholar
  14. 14.
    Preumont, A., Alexandre, P., Doroftei, I., & Goffin, F., “A Conceptual Walking Vehicle for Planetary Exploration”, Mechatronics, Elsevier Science, Great Britain, 1997, Vol. 7, No. 3, 287-296, ISSN 0957-4158.Google Scholar
  15. 15.
    Schmucker, U., Rusin, V., Konyev, M., Contact Processing in the Simulation of the Multi-Body Systems, EUROSIM 2007, 6th EUROSIM Congress on Modelling and Simulation : Ljubljana, Slovenia, 9-13 Sept., 2007, Proceedings, Vienna: ARGESIM, 2007, ISBN: 978-3-901608-32-2, ISBN: 3-901608-32-X, pp.76.Google Scholar
  16. 16.
    Todd, D. J., “Walking Machines: an Introduction to Legged Robots”, Kogan page, London, 1985.Google Scholar
  17. 17.
    Waldron, K. J., “Force and motion management in legged locomotion”, IEEE J Robot Automat 2, 1986., pp. 214-220.CrossRefGoogle Scholar
  18. 18.
    Weidemann, H., J., Pfeiffer, F., Eltze, J., “The Six-legged TUM Walking Robot”, International Workshop on Intelligent Robots and Systems IROS, 1994.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.“Gheorghe Asachi” Technical University of IasiIaşiRomania
  2. 2.“Gheorghe Asachi” Technical UniversityIaşiRomania

Personalised recommendations