Considerations upon the Influence of Manufacturing and Assembly Errors on the Kinematic and Dynamic Behavior in a Flight Simulator Stewart-Gough Platform

  • A. Pisla
  • T. Itul
  • D. PislaEmail author
  • A. Szilaghyi
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 3)


The paper presents a new approach concerning the accuracy of a dynamic flight simulator behavior by considering the influence of the manufacturing and assembling errors on the kinematics and dynamics of a Stewart-Gough platform. The obtained models offer the possibility of a complex study of the parallel structure in order to evaluate the kinematic and dynamic behaviors and to generate the control algorithms for an appropriate digital immersion. Using a numerical simulation the diagrams due to the manufacturing errors are computed and represented.


Flight simulator Kinematics Dynamics Manufacturing and assembling errors analysis 



This research activity continues the initial one financed from the research grants awarded by the Romanian Ministry of Education and Research, 120/2006.


  1. 1.
    Agheli M.M., Nategh M.J.: Identifying the Kinematic Parameters of Hexapod Machine Tool, World Academy of Science, Engineering and Technology 52, 2009.Google Scholar
  2. 2.
    Andreev A. N., Danilov A. M.: Information models for designing, conceptual broad-profile flight simulators. In: Measurement Techniques, 43 (2000), No. 8.Google Scholar
  3. 3.
    Bara M., Brişan C., Stan St.: Manufacturing and assembly errors modeling for anthropomorphic pseudo – tetrobots, Machine Building 2003 (55) – Number 11-12.Google Scholar
  4. 4.
    Briot S., Bonev I. A.: Accuracy analysis of 3-DOF planar parallel robots, Mechanism and Machine Theory 43, 2008, pp. 445–458.zbMATHCrossRefGoogle Scholar
  5. 5.
    Han S., Gao Z., Wang B.: Constraint Error Analysis for Three DOF Pure Translational Parallel Robot, International Conference on Measuring Technology and Mechatronics Automation, 2010 Changsha, China, March 13-March 14, icmtma, vol. 1, pp.824-827, 2010.Google Scholar
  6. 6.
    Kotlarski J., Heimann B. and Ortmaier T.: Improving the Pose Accuracy of Planar Parallel Robots using Mechanisms of Variable Geometry, Advances in Robot Manipulators, InTech, ISBN: 978-953-307-070-4, April 2010.Google Scholar
  7. 7.
    Merlet J. P.: Jacobian, manipulability, condition number and accuracy of parallel robots, Springer Tracts in Advanced Robotics, 2007, Volume 28/2007, pp. 175-184.CrossRefGoogle Scholar
  8. 8.
    Merlet J-P. and Daney D.: A new design for wire-driven parallel robot, In 2nd Int. Congress, Design and Modelling of mechanical systems, Monastir, 19-21 Mars 2007.Google Scholar
  9. 9.
    Nahon M.A., Gosseli: A comparison of flight simulator motion – base architectures. In: Journal of Mechanical Design, 122 (2000).Google Scholar
  10. 10.
    Null Li Ma, Rong W., Sun L., Li Z.: Error Compensation for a Parallel Robot Using Back Propagation Neural Networks, Robotics and Biomimetics, IEEE International Conference on Robotics and Biomimetics, pp. 1658-1663, 2006.Google Scholar
  11. 11.
    Paccot F., Andreff N., Martinet Ph.: Enhancing tracking performances of parallel kinematic machines, 12th IFToMM World Congress, Besancon, June 18-21, 2007.Google Scholar
  12. 12.
    Pashkevich A., Chablat D. and Wenger P.: Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions, Mechatronics, Vol. 19(4), pp.478-488, June 2009.CrossRefGoogle Scholar
  13. 13.
    Pernkopf F. and Husty M.: Reachable Workspace and Manufacturig Errors of Stewart-Gough Manipulators, Proceedings of MUSME, the International Symposium onMultibody Systems and Mechatronics, Uberlândia, Brasil, 6-9 March, 2005, pp. 293-304.Google Scholar
  14. 14.
    Pisla D.L., Itul T.P., Pisla A., Gherman B.: Dynamics of a Parallel Platform for Helicopter Flight Simulation Considering Friction, SYROM 2009, Proceedings of the 10th IFToMM International Symposium on Science of Mechanisms and Machines, Brasov, Romania, October 12-15, 2009, Springer Verlag, pp. 365-378.Google Scholar
  15. 15.
    Pott A. and Hiller M.: A New Approach To Error Analysis In parallel Kinematic Structures, In ARK, Sestri-Levante, 28 Juin-1 Juillet, 2004Google Scholar
  16. 16.
    Rizk R., Andreff N., Fauroux J. C., Lavest J. M. and Gogu G.: Precision Study of a Decoupled Four Degrees of Freedom Parallel Robor Including Manufacturig and Assembling Errors, Advanced in Integrated Design Manufacturing in Mechanical Engineering, Part II, pp. 111-127, 2007, Springer Verlag.Google Scholar
  17. 17.
    Szatmari Sz.: Geometrical Errors of Parallel Robots, Periodica Polytechnica Ser. Mech. Eng. Vol. 43, No. 2, pp. 155-162, 1999.Google Scholar
  18. 18.
    Szep C., Stan S. D., Csibi V., Manic M., Bălan R.: Kinematics, Workspace, Design and Accuracy Analysis of RPRPR Medical Parallel Robot, 2nd International Conference on Human System Interaction (HSI ’09), University of Catania, Catania, Italy, May 21-23, 2009.Google Scholar
  19. 19.
    Wang H., Kuang-Chao F.: Identification of strut and assembly errors of a 3-PRS serial–parallel machine tool, International Journal of Machine Tools & Manufacture 44, 1171–1178, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.“Technical” University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations