Advertisement

Single Piezo Actuator Driven Micro Robot for 2-Dimensional Locomotion

  • F. BeckerEmail author
  • V. Minchenya
  • K. Zimmermann
  • I. Zeidis
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 2)

Abstract

We analyse two micro robots for 2-dimensional locomotion on a flat surface. Forced bending vibrations of continua are used by both systems which are excited by piezoelectric bending actuators. These vibrations are transformed by non classical legs to complex trajectories at the contact points between robot and environment. The locomotion direction of the system can be controlled by the excitation frequencies of the actuation element. Models are developed and investigated to describe important motion effects of the robots. Furthermore some experimental results are presented.

Keywords

Micro robot Piezoelectric actuator Vibration of continua Elastodynamic locomotion 

Notes

Acknowledgments

The work has been supported by the German Research Foundation (DFG) under grant Zi 540/11-1 as well as by the Free State of Thuringia via graduation scholarship.

References

  1. 1.
    Abaza, K.: Ein Beitrag zur Anwendung der Theorie undulatorischer Lokomotion auf mobile Roboter. Dissertation at Ilmenau University of Technology, 2007.Google Scholar
  2. 2.
    Becker, F.: Modellbildung, Simulation und Entwurf schwingungsbasierter Lokomotionssysteme für 1D- und 2D-Bewegungen. Diploma thesis at Ilmenau University of Technology, 2009.Google Scholar
  3. 3.
    Blickhan, R.; Seyfarth, A.; Geyer, H.; Grimmer, S.; Wagner, H.; Günther, M.: Intelligence by Mechanics. In: Philosophical Transactions of the Royal Society 365 (2007), pp. 199-220CrossRefGoogle Scholar
  4. 4.
    Kosé, G.; Shoham, M.; Zaaroor, M.: Propulsion Method for Swimming Microrobots. In: IEEE/ASME Transactions on Robotics 23 (2007) No. 1, pp. 137-150.CrossRefGoogle Scholar
  5. 5.
    Lobontiu, N.; Goldfarb, M.; Garcia, E.: A Piezoelectric-driven Inchworm Locomotion Device. In: Mechanism and Machine Theory 36 (2001), pp. 425-443.zbMATHCrossRefGoogle Scholar
  6. 6.
    Murray, R. M.; Burdick, J.; Lewis, A. D.; Ostrowski, J.: The Mechanics of Undulatory Locomotion: The Mixed Kinematic and Dynamic Case. In: IEEE International Conference on Robotics and Automation 2 (1995), pp. 1945-1951.Google Scholar
  7. 7.
    Song, S. Y.; Sitti, M.: Surface-Tension-Driven Biologically Inspired Water Strider Robot: Theory and Experiments. In: IEEE/ASME Transactions on Robotics 23 (2007), No. 3, pp. 578-589.CrossRefGoogle Scholar
  8. 8.
    Wood, R. J.: The First Tabkeoff of a Biologically Inspired At-Scale Robotic Insect. In: IEEE/ASME Transactions on Robotics 24 (2008), No. 2, pp. 341-347.CrossRefGoogle Scholar
  9. 9.
    Zimmermann, K.; Zeidis, I.; Behn, C.: Mechanics of Terrestrial Locomotion. Berlin. Springer, 2009.zbMATHGoogle Scholar
  10. 10.
    Zimmermann, K.; Zeidis, I.; Bolotnik, N.; Pivovarov, M.: Dynamics of a Two-module Vibration-driven System Moving Along a Rough Horizontal Plane. In: Multibody System Dynamics 22 (2009), No. 2, pp. 199-219.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    IFToMM Dictionaries online. Available at: http://130.15.85.212/terminology/TerminologyWeb/1031_2057/frames.html (2009-12-08).
  12. 12.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • F. Becker
    • 1
    Email author
  • V. Minchenya
    • 2
  • K. Zimmermann
    • 1
  • I. Zeidis
    • 1
  1. 1.Department of Mechanical EngineeringIlmenau University of TechnologyIlmenauGermany
  2. 2.Department of Instrument-MakingBelarusian National Technical UniversityMinskBelarus

Personalised recommendations