Advertisement

Chloride ingress in cracked concrete- a literature review

  • Branko Šavija
  • Erik Schlangen
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 3)

Abstract

Chloride induced corrosion of reinforcing steel is one of the most ­important mechanisms causing deterioration of reinforced concrete structures and the need for their premature repair or replacement. Significant research efforts have, therefore, been undertaken in recent decades, trying to quantify these effects. Yet, most of the studies and recommendations are based on the assumption of sound, uncracked concrete. However, reinforced concrete structures are frequently cracked, due to different causes, such as shrinkage, thermal effects, and loading. Cracking of the reinforced concrete structural members alters the local transport properties of the concrete cover, and allows rapid ingress of chloride ions and onset of corrosion. In the past two decades, several studies have focused on the influence of cracks on chloride ingress in concrete. This paper aims to review these research efforts, with respect to experimental methods used to produce cracked specimens, simulate harsh exposure conditions and analyze the results. Different influencing parameters are discussed, and some recommendations for further research are given.

Keywords

Crack Opening Displacement Crack Width Chloride Penetration Chloride Ingress Mitigate Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Neville A. (1995), Mater Struct, vol. 28, pp. 63–70CrossRefGoogle Scholar
  2. [2]
    Adiyastuti, S.M. (2005), Influence of cracks on chloride induced corrosion in reinforced concrete flexural members, PhD Thesis, University of New South Wales, Sydney, AustraliaGoogle Scholar
  3. [3]
    Aldea, C.M., Shah, S.P. and Karr, A. (1999), J Mater Civil Eng, vol. 11, n.3, pp. 181–187CrossRefGoogle Scholar
  4. [4]
    Audenaert, K., Marsavina, L. and De Schutter, G. (2009), Key Eng Mat, vol. 399, pp. 153–160CrossRefGoogle Scholar
  5. [5]
    Djerbi, A., Bonnet, S., Khelidj, A. and Baroghel-bouny, V. (2008), Cement Concrete Res, vol. 38, pp. 877–883CrossRefGoogle Scholar
  6. [6]
    François, R. and Arliguie, G. (1998), J Mater Civil Eng, vol. 10, n. 1, pp. 14–20CrossRefGoogle Scholar
  7. [7]
    Gowripalan, N., Sirivivnaton, V. and Lim, C.C. (2000), Cement Concrete Res, vol. 30, pp. 725–730CrossRefGoogle Scholar
  8. [8]
    Ismail, M., Tuomi, A., François, R. and Gagne, R. (2004), Cement Concrete Res, vol. 34, pp. 711–716CrossRefGoogle Scholar
  9. [9]
    Ismail, M., Tuomi, A., François, R. and Gagne, R. (2008), Cement Concrete Res, vol. 38, pp. 1106–1111CrossRefGoogle Scholar
  10. [10]
    Jacobsen, S., Marchand, J. and Boisvert, L. (1996), Cement Concrete Res, vol. 36, pp. 869–881CrossRefGoogle Scholar
  11. [11]
    Konin, A., François, R. and Arliguie, G. (1998), Mater Struct, vol. 31, pp. 310-316CrossRefGoogle Scholar
  12. [12]
    Lim, C.C., Gowripalan, N., and Sirivivatnon, V. (2000), Cement Concrete Comp, vol.22, pp. 353–360CrossRefGoogle Scholar
  13. [13]
    Marcotte, T.D., Hansson, C.M. (2003), J Mater Sci, vol. 38, pp. 4765–4776CrossRefGoogle Scholar
  14. [14]
    Marsavina, L., Audenaert, K., De Schutter, G., Faur, N. and Marsavina, D. (2009), Constr Build Mater, vol. 23, pp. 264–274CrossRefGoogle Scholar
  15. [15]
    Mohammed, T.U., Otsuki, N., Hisada, M. and Shibata, T. (2001), J Mater Civil Eng, vol. 13, n.3, pp. 194–201CrossRefGoogle Scholar
  16. [16]
    Otieno, M.B., Alexander, M.G. and Beushausen, H.-D. (2010), Mag Concrete Res, vol. 62, n.6, pp. 393–404CrossRefGoogle Scholar
  17. [17]
    Otsuki, N., Miyazato, S., Diola, N.B. and Suzuki, H. (2000), ACI Mater J, vol. 97, n. 4, pp. 454–464Google Scholar
  18. [18]
    Garces Rodriguez, O. and Hooton, R.D. (2003), ACI Mater J, vol. 100, n.2, pp. 120–126Google Scholar
  19. [19]
    Sahmaran, M. (2007), J Mater Sci, vol. 42, pp. 9131–9136CrossRefGoogle Scholar
  20. [20]
    Schießl, P. and Raupach, M. (1997), ACI Struct J, vol. 94, n. 1, pp. 56–61Google Scholar
  21. [21]
    Win, P. P., Watanabe, M. and Machida, A. (2004), Cement Concrete Res, vol. 34, p. 1073–1079CrossRefGoogle Scholar
  22. [22]
    Yoon, I. S., Schlangen, E., de Rooij, M.R. and van Breugel, K. (2007), Key Eng Mat, vols. 348-349, pp. 769–772CrossRefGoogle Scholar
  23. [23]
    Yoon, I. S. and Schlangen, E. (2010), Key Eng Mat, vols. 417-418, pp. 765–768CrossRefGoogle Scholar
  24. [24]
    Taheri-Motlagh, A. (1998), Durability of reinforced concrete structures in aggressive marine environment, PhD Thesis, Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  25. [25]
    NordTest NT BUILD 443 (1995), FinlandGoogle Scholar
  26. [26]
    NordTest NT BUILD 492 (1999), FinlandGoogle Scholar
  27. [27]
    Jang, S. Y., Kim, B.S., and Oh, B.H. (2011), Cement Concrete Res, vol. 41, pp. 9–19CrossRefGoogle Scholar
  28. [28]
    Aldea, C.M., Shah, S.P. and Karr, A. (1999), Mater Struct, vol. 32, pp.370–376CrossRefGoogle Scholar
  29. [29]
    ang, K., Jansen, D.C. and Shah, S.P. (1997), Cement Concrete Res, vol. 37, pp.381–93CrossRefGoogle Scholar
  30. [30]
    Küter, A., Geiker, M.R., Olesen, J.F., Stang, H., Dauberschmidt, C. and Raupach, M. (2005). In: Proceedings of ConMat ’05, Vancouver, CanadaGoogle Scholar
  31. [31]
    Schlangen, E. and Joseph, C. (2008) In: Self-Healing Materials: Fundamentals, Design Strategies, and Applications,  Chapter 5, pp. 141-182, Ghosh S. K. (Ed.), WILEY-VCH Verlag GmbH & Co., WeinheimGoogle Scholar
  32. [32]
    François, R., Castel, A., Vidal, T. and Vu, -N.A. (2006), J Phys IV, 136, pp.285-293Google Scholar
  33. [33]
    Stanish, K.D., Hooton, R.D. and Thomas, M.D.A. (1997), FHMA Contract DTFH61, Department of Civil Engineering, University of Toronto, CanadaGoogle Scholar
  34. [34]
    Pease, B.J. (2010), Influence of concrete cracking on ingress and reinforcement corrosion, PhD thesis, Technical University of Denmark, Lyngby, DenmarkGoogle Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  1. 1.Microlab, Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations