Parallel wrists with three degrees of freedom

Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 183)

Abstract

Parallel wrists (PWs) with three degrees of freedom are spherical parallel mechanisms used in many applications that require orienting a body in space thus enabling arbitrary rotations of the mobile platform about a fixed point. Three-degree-of-freedom PWs already give rise to interesting applications by orienting machine tools beds and workpieces, surgical tools in minimally invasive surgery (Bombin et al. 2001, Li and Payandeh 2002), shoulder mechanism, solar panels, radar antennas, telescopes and artificial hips in biomedical engineering (Hunag and Yao 1999) and biologically inspired robots (Chablat and Wanger 2005), haptic devices (Birglen et al. 2002).

Keywords

Parallel Mechanism Kinematic Chain Mobile Platform Revolute Joint Haptic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alici G, Shirinzadeh B (2004a) Loci of singular configurations of a 3-DOF spherical parallel manipulator, Robotics and Autonomous Systems 48(2-3):77-91CrossRefGoogle Scholar
  2. Alici G, Shirinzadeh B (2004b) Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint. Mech Mach Theory 39(2):215-235MathSciNetMATHCrossRefGoogle Scholar
  3. Alizade RI, Tagiyev NR, Duffy J (1994) A forward and reverse displacement analysis of an in-parallel spherical manipulator. Mech Mach Theory 29(1):125-137CrossRefGoogle Scholar
  4. Al-Widyan K, Monsarrat B, Angeles J (2003) The robust analysis and design of parallel spherical manipulators. Proc Dresden Symposium on Geometry: Constructive and KinematicGoogle Scholar
  5. Al-Widyan K, Ma XQ, Angeles J (2011) The robust design of parallel spherical robots. Mech Mach Theory 46(3):335-343MATHCrossRefGoogle Scholar
  6. Bai S, Hansen MR, Andersen T (2008) Modelling of a special class of spherical parallel manipulators with Euler parameters. Robotica 27(2):161-170CrossRefGoogle Scholar
  7. Bai S, Hansen MR, Angeles J (2009) A robust forward-displacement analysis of spherical parallel robot. Mech Mach Theory 44(12):2204-2216MATHCrossRefGoogle Scholar
  8. Birglen L, Gosselin CM, Pouliot N, Monsarrat B, Laliberté T (2002) SHaDe, a new 3-dof haptic device. IEEE Trans Robotics Automation 18(2):166-175CrossRefGoogle Scholar
  9. Bonev IA, Gosselin CM (2006) Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Trans Robotics 22(5):1011-1017CrossRefGoogle Scholar
  10. Boudreau R, Darenfed S, Turkkan N (1998a) Etude comparative de trois nouvelles approches pour la solution du problème géométrique direct des manipulateurs parallèles. Mech Mac Theory 33(5):463-477MATHCrossRefGoogle Scholar
  11. Boudreau R, Levesque G, Darenfed S (1998b) Parallel manipulator kinematics learning using holographic neural network models. Robotics and Computer-Integrated Manufacturing 14(1):37-44CrossRefGoogle Scholar
  12. Bulca F, Angeles J, Zsombor-Murray PJ (1999) On the workspace determination of spherical serial and platform mechanisms. Mech Mach Theory, 34(3):497-512MATHCrossRefGoogle Scholar
  13. Callegari M, Marzetti P, Olivieri B (2004) Kinematics of a parallel mechanism for the generation of spherical motions. In: Lenarčič J, Galletti C (eds) On advances in robot kinematics, Kluwer Academic Publishers, Dordrecht, pp 449-458Google Scholar
  14. Carretero J, Podhorodeski R, Nahon M, Gosselin CM (2000) Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. Trans ASME J Mech Design 122(1):17-24CrossRefGoogle Scholar
  15. Celaya E (2002) Interval propagation for solving parallel spherical mechanisms. In: Lenarčič J, Thomas F (eds) Advances in robot kinematics, Kluwer Academic Publishers, Dordrecht, pp 415-422Google Scholar
  16. Di Gregorio R (2001c) A new parallel wrist using only revolute pairs: the 3-RUU wrist. Robotica 19:305-309Google Scholar
  17. Di Gregorio R (2001d) Kinematics of a new spherical parallel manipulator with three equal legs: The 3-URC wrist. Journal of Robotic Systems 18(5):213-219MATHCrossRefGoogle Scholar
  18. Di Gregorio R (2002b) A new family of spherical parallel manipulators. Robotica 20(4): 353-358CrossRefGoogle Scholar
  19. Di Gregorio (2003) Kinematics of the 3-UPU wrists. Mech mach Theory 38:253-363MATHCrossRefGoogle Scholar
  20. Di Gregorio (2004a) Statics and singularity loci of the 3-UPU wrists. IEEE Trans Robotics 20(4):750-753CrossRefGoogle Scholar
  21. Di Gregorio (2004b) Kinematics of the 3-RSR wrists. IEEE Trans Robotics 20(4):750-753CrossRefGoogle Scholar
  22. Di Gregorio R, Parenti-Castelli V (2004) Dynamics of a class of paralle wrists. Trans ASME J Mech Design 126(3):436-441CrossRefGoogle Scholar
  23. Enferadi J, Tootoonchi A (2008) A novel spherical parallel manipulator: forward position problem, singularity analysis, and isotropy design. Robotica 27(5): 663-676CrossRefGoogle Scholar
  24. Fang Y, Tsai LW (2004) Structure synthesis of a class of 3-DOF rotational parallel manipulators. IEEE Trans Robotics Automation 20(1):117-121CrossRefGoogle Scholar
  25. Gallardo J, Rodriguez R, Caudillo M, Rico JM (2008) A family of spherical parallel manipulators with two legs. Mech Mach Theory, 43(2):201-216MATHCrossRefGoogle Scholar
  26. Gosselin CM (1995) Simulation and computer-aided kinematic design of three-degree-of-freedom spherical parallel manipulators. J Robotic Systems  12(12):857-869MATHCrossRefGoogle Scholar
  27. Gosselin CM (1999) Static balancing of spherical 3-dof parallel mechanisms and manipulators. Int J Robotics Research 18(8):812-829CrossRefGoogle Scholar
  28. Gosselin C, Angeles J (1989) The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. Trans ASME, J Mechanisms Trans and Automation in Design 111(2):202-207CrossRefGoogle Scholar
  29. Gosselin CM, Hamel JF (1994) The agile eye: A high performance three-degree-of-freedom camera-orienting device. Proc IEEE Int Conf Robotics and Automation, San Diego, pp 781–786Google Scholar
  30. Gosselin CM, Lavoie E (1993) On the kinematic design of spherical three-degree-of-freedom parallel manipulators. Int J Robotics Research 12(4):394–402CrossRefGoogle Scholar
  31. Gosselin CM, St-Pierre E (1997) Development and experimentation of a fast 3-dof orienting device. Int J Robotics Research 16(15):619-630CrossRefGoogle Scholar
  32. Gosselin CM, Wang J (2002) Singularity loci of a special class of spherical three-degree-of-freedom parallel mechanisms with revolute actuators. Int J Robotics Research 21(7):649-659CrossRefGoogle Scholar
  33. Gosselin CM, Sefrioui J, Richard MJ (1994a) On the direct kinematics of spherical three-degree-of-freedom parallel manipulators with a coplanar platform. Trans ASME J Mech Design 116(2):587-593CrossRefGoogle Scholar
  34. Gosselin CM, Sefrioui J, Richard MJ (1994b) On the direct kinematics of spherical three-degree-of-freedom parallel manipulators of general architecture. Trans ASME J Mech Design 116(2):594-598CrossRefGoogle Scholar
  35. Gosselin CM, Perreault L, Vaillancourt C (1995) Simulation and computer-aided kinematic design of three-degree-of-freedom spherical parallel manipulators. J Robotic Systems 12(12):857-869MATHCrossRefGoogle Scholar
  36. Gosselin CM, St-Pierre E, Gagné M (1996) On the development of the agile eye: mechanical design, control issues and experimentation, IEEE Robotics Automation Magazine 3(4):29-37CrossRefGoogle Scholar
  37. Hess-Coelho TA (2006) Topology synthesis of a parallel wrist mechanis. Trans ASME J Mech Design 128(1):230-235CrossRefGoogle Scholar
  38. Huang T, Gosselin C, Whitehouse DJ, Chetwynd DG, (2003) Analytical approach for optimal design of a type of spherical parallel manipulator using dexterous performance indices. Proc Inst Mech Eng, Part C: J Mech Eng Science 217(4):447-455CrossRefGoogle Scholar
  39. Huang Z, Fang YF (1996) Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanism. Mech Mach Theory 31(8):1009-1018MathSciNetCrossRefGoogle Scholar
  40. Huang Z, Yao YL (1999) A new closed-form kinematics of the generalized 3-dof spherical parallel manipulator. Robotica 17(5):475-485CrossRefGoogle Scholar
  41. Innocenti C, Parenti-Castelli V (1993) Echelon form solution of direct kinematics for the general fully-parallel spherical wrist. Mech Mach Theory 28(4):553-561CrossRefGoogle Scholar
  42. Keler ML (1998) Dual expansion of an optimal spherical platform device. In: Lenarčič J, Husty M (eds) Advances in robot kinematics: analysis and control, Kluwer Academic Publishers, Dordrecht, pp 79-86Google Scholar
  43. Kong X, Gosselin CM (2004a) Type synthesis of 3-DOF spherical parallel manipulators based on screw theory. Trans ASME, J Mech Design 126:101-108CrossRefGoogle Scholar
  44. Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer, BerlinMATHGoogle Scholar
  45. Kurtz R, Hayward V (1992) Multiple-goal kinematic optimisation of parallel spherical mechanisms with actuator redundancy. IEEE Trans Robot Autom 8(5):644-651CrossRefGoogle Scholar
  46. Lee S, Kim W, Oh S, Yi B (2005) Kinematic analysis and implementation of a spherical 3-degree-of-freedom parallel mechanism. Proc IEEE Int Conf Inteligent Robots Systems, Edmonton, pp 972-977Google Scholar
  47. Leguay-Durand S, Reboulet C (1997) Optimal design of a redundant spherical parallel manipulator. Robotica 15(4):399-405CrossRefGoogle Scholar
  48. Li M, Huang T, Chetwynd DG, Hu SJ (2006) Forward position analysis of the 3-DOF module of the TriVariant: A 5-DOF reconfigurable hybrid robot. Trans ASME J Mech Design 128(1):319-322CrossRefGoogle Scholar
  49. Liu X, Jin Z, Gao F (2000) Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices. Mech Mach Theory 35(9):1257-1267CrossRefGoogle Scholar
  50. Mohamadi Daniali HR, Zsombor-Murray P-J, Angeles J (1993) The kinematics of a 3 dof planar and spherical double-triangle parallel manipulator. In: Angeles J, Kovacs P, Hommel G (eds) Computational kinematics, KluwerGoogle Scholar
  51. Parenti-Castelli V, Di Gregorio R (2001) Real-time actual pose determination of the general fully parallel spherical wrist, using only one extra sensor. Journal of Robotic Systems 18(12):723-729MATHCrossRefGoogle Scholar
  52. Pierrot F, Dombre E (1991) Parallel structures for robot wrists. In: Lenarčič J, Stifter S (eds) Advances in Robot Kinematics, Springer-Verlag, WienGoogle Scholar
  53. Reboulet C, Leguay S (1996) The interest of redundancy for the design of a spherical parallel manipulator. In: Lenarčič J, Parenti-Castelli V (eds) Recent advances in robot kinematics, Kluwer Academic Publishers, Dordrecht, pp 369-378CrossRefGoogle Scholar
  54. Sadjadian H, Taghirad HD (2006) Kinematics, singularity and stiffness analysis of the hydraulic shoulder: a 3-dof redundant parallel manipulator. Advanced Robotics 20(7):763-781CrossRefGoogle Scholar
  55. Saltaren RJ, Sabater JM, Yime E, Azorin JM, Aracil R, Garcia N (2007) Performance evaluation of spherical parallel platforms for humanoid robots. Robotica 25(3):257-267CrossRefGoogle Scholar
  56. Sefrioui J, Gosselin CM (1994) Etude et représentation des lieux de singularité des manipulateurs sphériques à trois degrés de liberté avec actionneurs prismatiques. Mech Mach Theory 29(4):559-579CrossRefGoogle Scholar
  57. Shum JCF, Zsombor-Murray PJ (2000) Direct kinematics of the double-triangular manipulator: an exercise in geometry thinking. In: Lenarčič J, Stanišić MM (eds) Advances in robot kinematics, Kluwer Academic Publishers, Dordrecht, pp 385-394CrossRefGoogle Scholar
  58. Staicu S (2009) Recursive modelling in dynamics of Agile Wrist spherical parallel robot. Robotics and Computer-Integrated Manufacturing 25(2):409-416MathSciNetCrossRefGoogle Scholar
  59. Takeda Y, Funabashi H, Sasaki Y (1996) Development of a spherical in-parallel actuated mechanism with three degrees of freedom with large working space and high motion transmissibility: evaluation of motion transmissibility and analysis of working space. JSME Int Journal. Ser. C, Dynamics, control, robotics, design and manufacturing 39-C(3):541-548Google Scholar
  60. Vertechy R, Parenti-Castelli V (2006b) Real-time direct position analysis of parallel spherical wrists by using extra sensors. Trans ASME J Mech Design 128(1):288-294CrossRefGoogle Scholar
  61. Vischer P, Clavel R (2000a) Argos: a novel 3-DoF parallel wrist manipulator. Int J Robot Res 19(1):5-11CrossRefGoogle Scholar
  62. Vischer P, Clavel R (2000b) Kinematic calibration of the parallel Argos mechanism. Robotica 18: 589-599CrossRefGoogle Scholar
  63. Wang J, Gosselin CM (2004a) Kinematic analysis and design of kinematically redundant parallel mechanisms. Trans ASME, J Mech Design 126:109-118CrossRefGoogle Scholar
  64. Wang J, Gosselin CM (2004b) Singularity loci of a special class of spherical 3-dof parallel mechanisms with prismatic actuators. ASME J Mech Design, 126(2):319-326CrossRefGoogle Scholar
  65. Yang G, Ho H, Lin W, Chen I (2004) A differential geometry approach for the workspace analysis of spherical parallel manipulators. Proc of the 11th World Congress in Mechanism and Machine Science, vol 4, China Machine Press, Beijing, pp 260-265Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institut Français de Mécanique Avancée, LaMIAubière CedexFrance

Personalised recommendations