Advertisement

Control

  • Yasmina Bestaoui Sebbane
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 58)

Abstract

The control methods implemented on lighter than air robots lie in two categories: traditional control methods and advanced control methods. The traditional control methods achieve autonomous control goals via classical control algorithms. These control methods have the advantage of being easily implemented and providing reliable control performance while the weaknesses include the costs of computation to model the system and tuning the control parameters. The most basic nonlinear control laws are the On-off control and Gain scheduling. Most of the advanced control methods are faced with highly nonlinear and time varying control system, in which it is difficult to obtain an accurate dynamic model of the LTAR and the environment. Several control methods have been developed such as back stepping control, robust control, model-prediction control and other intelligent control methods.

Keywords

Linear Quadratic Regulator Multiple Input Multiple Output System Gain Schedule Fault Tolerant Control Fault Tree Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adamski, W., Herman, P., Bestaoui, Y., Kozlowski, K.: Control of an airship in case of unpredictable environment conditions. In: IEEE Conf. on Control and Fault-Tolerant Systems, Nice, France, pp. 843–848 (2010) Google Scholar
  2. 4.
    Ambrosino, G., Ariola, M., Ciniglio, U., Carraro, F., Delellis, E., Pironti, A.: Path generation and tracking in 3D for UAVs. IEEE Trans. Control Syst. Technol. 17, 980–988 (2009) CrossRefGoogle Scholar
  3. 7.
    Azinheira, J.R., Moutinho, A.B.: Hover control of an UAV with backstepping design including input saturations. IEEE Trans. Control Syst. Technol. 16, 517–526 (2007) CrossRefGoogle Scholar
  4. 8.
    Azinheira, J.R., de Paiva, E.C., Bueno, S.S.: Influence of wind speed on airship dynamics. J. Guid. Control Dyn. 25, 1116–1124 (2002) CrossRefGoogle Scholar
  5. 9.
    Azinheira, J.R., Moutinho, A.B., de Paiva, E.C.: A backstepping controller for path tracking of an underactuated autonomous airship. Int. J. Robust Nonlinear Control 19, 418–441 (2009) zbMATHCrossRefGoogle Scholar
  6. 10.
    Azouz, N., Bestaoui, Y., Lemaitre, O.: Dynamic analysis of airships with small deformations. In: 3rd IEEE Workshop on Robot Motion and Control, Bukowy-Dworek, pp. 209–215 (2002) Google Scholar
  7. 24.
    Bestaoui, Y., Hima, S.: Some insights in path planning of small autonomous blimps. Arch. Control Sci. 11, 139–166 (2001) zbMATHGoogle Scholar
  8. 30.
    Bethke, B., Valenti, M., How, J.P.: UAV task assignment, an experimental demonstration with integrated health monitoring. IEEE J. Robot. Autom. 15, 39–44 (2008) Google Scholar
  9. 31.
    Bicho, E., Moreira, A., Carvalheira, M., Erlhagen, W.: Autonomous flight trajectory generator via attractor dynamics. In: Proc. of IEEE/RSJ Intelligents Robots and Systems, vol. 2, pp. 1379–1385 (2005) Google Scholar
  10. 33.
    Blanchini, F., Sznaier, M.: Rational L1 suboptimal compensators for continuous time systems. IEEE Trans. Autom. Control 39, 1487–1492 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 37.
    Boukraa, D., Bestaoui, Y., Azouz, N.: 3D dimensional trajectory tracking for a fixed wing unmanned aerial vehicle using dynamic inversion. In: 17th IFAC Symposium on Automatic Control in Aerospace, Toulouse, France (2007) Google Scholar
  12. 38.
    Boukraa, D., Bestaoui, Y., Azouz, N.: Three dimensional trajectory generation for an autonomous plane. Inter. Review of Aerospace Eng. 4, 355–365 (2008) Google Scholar
  13. 39.
    Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Basel (1983) Google Scholar
  14. 43.
    Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, New York (1996) zbMATHGoogle Scholar
  15. 44.
    Chen, B., Nagarajaiah, S.: Linear matrix inequality based robust fault detection and isolation using the eigenstructure assignment method. J. Guid. Control Dyn. 30, 1831–1835 (2007) CrossRefGoogle Scholar
  16. 46.
    Colgren, R.D.: Applications of Robuts Control to Nonlinear Systems. Progress in Astronautics and Aeronautics. AIAA, Washington (2004) CrossRefGoogle Scholar
  17. 48.
    Cook, M.V., Lipscombe, J.M., Goineau, F.: Analysis of the stability modes of the non rigid airship. Aeronaut. J. 104, 279–289 (2000) Google Scholar
  18. 49.
    Coron, J.-M.: On the stabilization of some nonlinear control systems: results, tools, and applications. NATO Advanced Study Institute, Montreal (1998) Google Scholar
  19. 50.
    Crump, M.R.: The dynamics and control of catapult launching unmanned air vehicles from moving platforms. Ph.D. thesis, RMIT University, Melbourne, Australia (2002) Google Scholar
  20. 55.
    Donneker, S.: Distributed thrust and autonomous ground handling. In: 13th AIAA Lighter than Air Systems Technology Conference, pp. 122–131 (1999) Google Scholar
  21. 56.
    Doyle, J.C., Stein, G.: Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control 26, 4–16 (1981) zbMATHCrossRefGoogle Scholar
  22. 57.
    Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard H2 and H control problems. IEEE Trans. Autom. Control 34, 831–847 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 64.
    Evans, J.R., DeLaurier, J.D., Scholaert, H.: A study of airship six degrees of freedom flight dynamics. Research report N. 79, University of Toronto, Canada (1981) Google Scholar
  24. 66.
    Fantoni, I., Lozano, R.: Nonlinear Control for Under-actuated Mechanical Systems. Springer, New York (2002) CrossRefGoogle Scholar
  25. 70.
    Franklin, G.F., Powell, J.D., Workman, M.: Digital Control of Dynamic Systems. Addison-Wesley, Reading (1998) Google Scholar
  26. 75.
    Fukao, T., Kanzawa, T., Osuka, K.: Inverse optimal tracking control of an aerial blimp robot. In: IEEE Workshop on Robot Motion and Control, pp. 193–198 (2005) Google Scholar
  27. 76.
    Fukushima, H., Saito, R., Matsuno, R., Hada, Y., Kawabata, K., Asama, H.: Model predictive control of an autonomous blimp with input and output constraints. In: IEEE Int. Conf. on Control Applications, Munich, Germany, pp. 2184–2189 (2006) Google Scholar
  28. 77.
    Fukushima, H., Kon, K., Hada, Y., Matsuno, R., Kawabata, K., Asama, H.: State predictive control of an autonomous blimp in the presence of time delay and disturbance. In: IEEE Int. Conf. on Control Applications, pp. 188–193 (2007) Google Scholar
  29. 87.
    Hong, C.H., Choi, K.C., Kim, B.S.: Applications of adaptive neural network control to an unmanned airship. Int. J. Control. Autom. Syst. 7, 911–917 (2009) CrossRefGoogle Scholar
  30. 88.
    Hyde, R.: The application of robust control to VSTOL aircraft. Ph.D. thesis, Cambridge Univer., United Kingdom (1991) Google Scholar
  31. 89.
    Hygounenc, E.: Modelisation et Commande d’un Dirigeable pour le Vol Autonome. Ph.D. thesis, LAAS-CNRS, France (2003) Google Scholar
  32. 90.
    Hygounenc, E., Soueres, P.: Lateral path following GPS-based control of a small size unmanned blimp. In: IEEE Int. Conf. on Robotics and Automation, pp. 540–545 (2002) Google Scholar
  33. 94.
    Jia, R., Frye, M.T., Qian, C.: Control of an airship using particle swarm optimization and neural network. In: IEEE Inter. Conf. on Systems, Man and Cybernetics, San Antonio, TX, pp. 1809–1814 (2009) Google Scholar
  34. 98.
    Kaminer, I., Khargonekar, P.P., Robel, G.: Design of a localizer capture and track modes for a lateral autopilot using H synthesis. IEEE Control Syst. Mag. 10, 13–21 (1990) CrossRefGoogle Scholar
  35. 99.
    Kaminer, I., Pascoal, A., Hallberg, E., Silvestre, C.: Trajectory tracking for autonomous vehicles: an integrated approach to guidance and control. J. Guid. Control Dyn. 21, 29–38 (1998) zbMATHCrossRefGoogle Scholar
  36. 106.
    Khammash, M., Zou, L., Almquist, J.A., Van Der Linden, C.: Robust aircraft pitch axis control under weight and center of gravity uncertainty. In: 38th IEEE Conference on Decision and Control, vol. 2, pp. 1970–1975 (1999) Google Scholar
  37. 108.
    Khoury, G., Gillett, J.D.: Airship Technology. Cambridge Aerospace Series (1999) Google Scholar
  38. 111.
    Kim, J., Keller, J., Kumar, V.: Design and verification of controllers for airships. In: IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, Las Vegas, NV, pp. 54–60 (2003) Google Scholar
  39. 112.
    Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian process and reinforcement learning for identification and control of an autonomous blimp. In: Int. Conf. on Robotics and Automation, pp. 742–747 (2007) Google Scholar
  40. 113.
    Kornienko, A., Well, K.: Estimation of longitudinal motion of a remotely controlled airship. In: AIAA Atmospheric Flight Mechanics Conf., Austin, TX (2003) Google Scholar
  41. 117.
    Kurtoglu, T., Johnson, S.B., Barszcz, E., Johnson, J.R., Robinson, P.I.: Integrating system health management into the early design of aerospace system using functional fault analysis. In: Inter. Conf. on Prognostic and Health Management (2008) Google Scholar
  42. 119.
    Kwakernaak, H.: Robust control and H optimization—tutorial paper. Automatica 29, 255–273 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 131.
    Li, Y., Nahon, M.: Modeling and simulation of airship dynamics. J. Guid. Control Dyn. 30, 1691–1700 (2007) CrossRefGoogle Scholar
  44. 134.
    Liu, Y., Pan, Z., Stirling, D., Naghdy, F.: Control of autonomous airship. In: IEEE Int. Conf. on Robotics and Biomimetics, Guilin, China, pp. 2457–2462 (2009) Google Scholar
  45. 146.
    Meskin, N., Jiang, T., Sobhani, E., Khorasani, K., Rabbath, C.A.: A nonlinear geometric fault detection and isolation approach for almost lighter than air vehicles. In: IEEE Int. Conf. on Control Applications, pp. 1073–1078 (2007) Google Scholar
  46. 150.
    Moutinho, A.B.: Modeling and nonlinear control for airship autonomous flight. Ph.D. thesis, Univ. Tech. Lisbon, Portugal (2007) Google Scholar
  47. 151.
    Moutinho, A.B., Azinheira, J.R.: Stability and robustness analysis of the AURORA airship control system using dynamic inversion. In: IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2265–2270 (2005) Google Scholar
  48. 159.
    Nicolos, I.K., Valavanis, K.P., Tsourveloudis, N.T., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man Cybern. 33, 898–912 (2003) CrossRefGoogle Scholar
  49. 164.
    Park, C.S., Lee, H., Tahk, M.J., Bang, H.: Airship control using neural network augmented model inversion. In: IEEE Int. Conf. on Control Applications, vol. 1, pp. 558–563 (2003) Google Scholar
  50. 165.
    Pashilkar, A.A., Sundararajan, N., Saratchandran, P.: A fault-tolerant neural aided controller for aircraft auto-landing. Aerosp. Sci. Technol. 10, 49–61 (2006) CrossRefGoogle Scholar
  51. 171.
    Postlethwaite, I., Bates, D.: Robust integrated flight and propulsion controller for the Harriet aircraft. J. Guid. Control Dyn. 22, 286–290 (1999) CrossRefGoogle Scholar
  52. 179.
    Rottmann, A., Plagemann, C., Hilgero, P., Burgaud, W.: Autonomous blimp control using model free reinforcement learning in a continuous state and action space. In: IEEE IROS, San Diego, CA, pp. 1895–1900 (2007) Google Scholar
  53. 181.
    Sastry, S.: Nonlinear Systems, Analysis, Stability and Control. Springer, Berlin (1999) zbMATHGoogle Scholar
  54. 182.
    Schmidt, D.K.: Modeling and near-space station-keeping in control of a large high altitude airship. J. Guid. Control Dyn. 30, 540–547 (2007) CrossRefGoogle Scholar
  55. 193.
    Shue, S., Agarwal, R.: Design of automatic landing system using mixed H2/H control. J. Guid. Control Dyn. 22, 103–114 (1999) CrossRefGoogle Scholar
  56. 195.
    Singh, S.N., Steinberg, M.L., Page, A.B.: Nonlinear adaptive and sliding mode flight path control of FA 18 model. IEEE Trans. Aerosp. Electron. Syst. 39, 1250–1262 (2003) CrossRefGoogle Scholar
  57. 196.
    Solaque, L., Lacroix, S.: Airship control. In: Ollera, A., Maza, I. (eds.) Multiple Heterogeneous Unmanned Aerial Vehicles, pp. 147–188. Springer, Berlin (2007) CrossRefGoogle Scholar
  58. 197.
    Solaque, L., Pinson, Z., Duque, M.: Nonlinear control of the airship cruise flight phase with dynamical decoupling. In: IEEE Electronics, Robotics and Automotive Mechanics Conf., pp. 472–477 (2008) Google Scholar
  59. 198.
    Sonneveldt, L., Van Oort, E.R., Chu, Q.P., Mulder, J.A.: Nonlinear adaptive trajectory control applied to an F16 model, J. Guid. Control Dyn. 32, 25–39 (2009) CrossRefGoogle Scholar
  60. 200.
    Spooner, J.T., Maggiore, M., Ordonez, R., Passino, K.M.: Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques. Wiley, New York (2002) CrossRefGoogle Scholar
  61. 201.
    Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, 2nd edn. Wiley, New York (2003) Google Scholar
  62. 205.
    Takaya, T., Kawamura, H., Minagawa, Y., Yamamoto, M.: PID landing orbit motion controller for an indoor blimp robot. Artif. Life Robot. 11, 227–234 (2007) CrossRefGoogle Scholar
  63. 209.
    Ursem, R.K.: Models for evolutionary algorithms and their applications in system identification and control optimization. Ph.D. thesis, Univ. of Aarhus, Denmark (2003) Google Scholar
  64. 212.
    Wang, X., Shan, X.: Airship attitude tracking system. Appl. Math. Mech. 27, 919–926 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  65. 216.
    Wayshek, J., Dogan, A., Bestaoui, Y.: Investigation into the time varying mass effect on airship controller performance. In: AIAA Atmospheric Flight Mechanics, IL (2009) Google Scholar
  66. 218.
    Wie, B.: Space Vehicle Dynamics and Control. AIAA Education Series (1998) zbMATHGoogle Scholar
  67. 230.
    Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall, New York (1998) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Electrical EngineeringUniversité d’EvryEvryFrance

Personalised recommendations