Lighter than Air Robots pp 165-217 | Cite as
Control
Abstract
The control methods implemented on lighter than air robots lie in two categories: traditional control methods and advanced control methods. The traditional control methods achieve autonomous control goals via classical control algorithms. These control methods have the advantage of being easily implemented and providing reliable control performance while the weaknesses include the costs of computation to model the system and tuning the control parameters. The most basic nonlinear control laws are the On-off control and Gain scheduling. Most of the advanced control methods are faced with highly nonlinear and time varying control system, in which it is difficult to obtain an accurate dynamic model of the LTAR and the environment. Several control methods have been developed such as back stepping control, robust control, model-prediction control and other intelligent control methods.
Keywords
Linear Quadratic Regulator Multiple Input Multiple Output System Gain Schedule Fault Tolerant Control Fault Tree AnalysisReferences
- 1.Adamski, W., Herman, P., Bestaoui, Y., Kozlowski, K.: Control of an airship in case of unpredictable environment conditions. In: IEEE Conf. on Control and Fault-Tolerant Systems, Nice, France, pp. 843–848 (2010) Google Scholar
- 4.Ambrosino, G., Ariola, M., Ciniglio, U., Carraro, F., Delellis, E., Pironti, A.: Path generation and tracking in 3D for UAVs. IEEE Trans. Control Syst. Technol. 17, 980–988 (2009) CrossRefGoogle Scholar
- 7.Azinheira, J.R., Moutinho, A.B.: Hover control of an UAV with backstepping design including input saturations. IEEE Trans. Control Syst. Technol. 16, 517–526 (2007) CrossRefGoogle Scholar
- 8.Azinheira, J.R., de Paiva, E.C., Bueno, S.S.: Influence of wind speed on airship dynamics. J. Guid. Control Dyn. 25, 1116–1124 (2002) CrossRefGoogle Scholar
- 9.Azinheira, J.R., Moutinho, A.B., de Paiva, E.C.: A backstepping controller for path tracking of an underactuated autonomous airship. Int. J. Robust Nonlinear Control 19, 418–441 (2009) MATHCrossRefGoogle Scholar
- 10.Azouz, N., Bestaoui, Y., Lemaitre, O.: Dynamic analysis of airships with small deformations. In: 3rd IEEE Workshop on Robot Motion and Control, Bukowy-Dworek, pp. 209–215 (2002) Google Scholar
- 24.Bestaoui, Y., Hima, S.: Some insights in path planning of small autonomous blimps. Arch. Control Sci. 11, 139–166 (2001) MATHGoogle Scholar
- 30.Bethke, B., Valenti, M., How, J.P.: UAV task assignment, an experimental demonstration with integrated health monitoring. IEEE J. Robot. Autom. 15, 39–44 (2008) Google Scholar
- 31.Bicho, E., Moreira, A., Carvalheira, M., Erlhagen, W.: Autonomous flight trajectory generator via attractor dynamics. In: Proc. of IEEE/RSJ Intelligents Robots and Systems, vol. 2, pp. 1379–1385 (2005) Google Scholar
- 33.Blanchini, F., Sznaier, M.: Rational L1 suboptimal compensators for continuous time systems. IEEE Trans. Autom. Control 39, 1487–1492 (1994) MathSciNetMATHCrossRefGoogle Scholar
- 37.Boukraa, D., Bestaoui, Y., Azouz, N.: 3D dimensional trajectory tracking for a fixed wing unmanned aerial vehicle using dynamic inversion. In: 17th IFAC Symposium on Automatic Control in Aerospace, Toulouse, France (2007) Google Scholar
- 38.Boukraa, D., Bestaoui, Y., Azouz, N.: Three dimensional trajectory generation for an autonomous plane. Inter. Review of Aerospace Eng. 4, 355–365 (2008) Google Scholar
- 39.Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Basel (1983) Google Scholar
- 43.Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, New York (1996) MATHGoogle Scholar
- 44.Chen, B., Nagarajaiah, S.: Linear matrix inequality based robust fault detection and isolation using the eigenstructure assignment method. J. Guid. Control Dyn. 30, 1831–1835 (2007) CrossRefGoogle Scholar
- 46.Colgren, R.D.: Applications of Robuts Control to Nonlinear Systems. Progress in Astronautics and Aeronautics. AIAA, Washington (2004) CrossRefGoogle Scholar
- 48.Cook, M.V., Lipscombe, J.M., Goineau, F.: Analysis of the stability modes of the non rigid airship. Aeronaut. J. 104, 279–289 (2000) Google Scholar
- 49.Coron, J.-M.: On the stabilization of some nonlinear control systems: results, tools, and applications. NATO Advanced Study Institute, Montreal (1998) Google Scholar
- 50.Crump, M.R.: The dynamics and control of catapult launching unmanned air vehicles from moving platforms. Ph.D. thesis, RMIT University, Melbourne, Australia (2002) Google Scholar
- 55.Donneker, S.: Distributed thrust and autonomous ground handling. In: 13th AIAA Lighter than Air Systems Technology Conference, pp. 122–131 (1999) Google Scholar
- 56.Doyle, J.C., Stein, G.: Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control 26, 4–16 (1981) MATHCrossRefGoogle Scholar
- 57.Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard H2 and H ∞ control problems. IEEE Trans. Autom. Control 34, 831–847 (1989) MathSciNetMATHCrossRefGoogle Scholar
- 64.Evans, J.R., DeLaurier, J.D., Scholaert, H.: A study of airship six degrees of freedom flight dynamics. Research report N. 79, University of Toronto, Canada (1981) Google Scholar
- 66.Fantoni, I., Lozano, R.: Nonlinear Control for Under-actuated Mechanical Systems. Springer, New York (2002) CrossRefGoogle Scholar
- 70.Franklin, G.F., Powell, J.D., Workman, M.: Digital Control of Dynamic Systems. Addison-Wesley, Reading (1998) Google Scholar
- 75.Fukao, T., Kanzawa, T., Osuka, K.: Inverse optimal tracking control of an aerial blimp robot. In: IEEE Workshop on Robot Motion and Control, pp. 193–198 (2005) Google Scholar
- 76.Fukushima, H., Saito, R., Matsuno, R., Hada, Y., Kawabata, K., Asama, H.: Model predictive control of an autonomous blimp with input and output constraints. In: IEEE Int. Conf. on Control Applications, Munich, Germany, pp. 2184–2189 (2006) Google Scholar
- 77.Fukushima, H., Kon, K., Hada, Y., Matsuno, R., Kawabata, K., Asama, H.: State predictive control of an autonomous blimp in the presence of time delay and disturbance. In: IEEE Int. Conf. on Control Applications, pp. 188–193 (2007) Google Scholar
- 87.Hong, C.H., Choi, K.C., Kim, B.S.: Applications of adaptive neural network control to an unmanned airship. Int. J. Control. Autom. Syst. 7, 911–917 (2009) CrossRefGoogle Scholar
- 88.Hyde, R.: The application of robust control to VSTOL aircraft. Ph.D. thesis, Cambridge Univer., United Kingdom (1991) Google Scholar
- 89.Hygounenc, E.: Modelisation et Commande d’un Dirigeable pour le Vol Autonome. Ph.D. thesis, LAAS-CNRS, France (2003) Google Scholar
- 90.Hygounenc, E., Soueres, P.: Lateral path following GPS-based control of a small size unmanned blimp. In: IEEE Int. Conf. on Robotics and Automation, pp. 540–545 (2002) Google Scholar
- 94.Jia, R., Frye, M.T., Qian, C.: Control of an airship using particle swarm optimization and neural network. In: IEEE Inter. Conf. on Systems, Man and Cybernetics, San Antonio, TX, pp. 1809–1814 (2009) Google Scholar
- 98.Kaminer, I., Khargonekar, P.P., Robel, G.: Design of a localizer capture and track modes for a lateral autopilot using H ∞ synthesis. IEEE Control Syst. Mag. 10, 13–21 (1990) CrossRefGoogle Scholar
- 99.Kaminer, I., Pascoal, A., Hallberg, E., Silvestre, C.: Trajectory tracking for autonomous vehicles: an integrated approach to guidance and control. J. Guid. Control Dyn. 21, 29–38 (1998) MATHCrossRefGoogle Scholar
- 106.Khammash, M., Zou, L., Almquist, J.A., Van Der Linden, C.: Robust aircraft pitch axis control under weight and center of gravity uncertainty. In: 38th IEEE Conference on Decision and Control, vol. 2, pp. 1970–1975 (1999) Google Scholar
- 108.Khoury, G., Gillett, J.D.: Airship Technology. Cambridge Aerospace Series (1999) Google Scholar
- 111.Kim, J., Keller, J., Kumar, V.: Design and verification of controllers for airships. In: IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, Las Vegas, NV, pp. 54–60 (2003) Google Scholar
- 112.Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian process and reinforcement learning for identification and control of an autonomous blimp. In: Int. Conf. on Robotics and Automation, pp. 742–747 (2007) Google Scholar
- 113.Kornienko, A., Well, K.: Estimation of longitudinal motion of a remotely controlled airship. In: AIAA Atmospheric Flight Mechanics Conf., Austin, TX (2003) Google Scholar
- 117.Kurtoglu, T., Johnson, S.B., Barszcz, E., Johnson, J.R., Robinson, P.I.: Integrating system health management into the early design of aerospace system using functional fault analysis. In: Inter. Conf. on Prognostic and Health Management (2008) Google Scholar
- 119.Kwakernaak, H.: Robust control and H ∞ optimization—tutorial paper. Automatica 29, 255–273 (1993) MathSciNetMATHCrossRefGoogle Scholar
- 131.Li, Y., Nahon, M.: Modeling and simulation of airship dynamics. J. Guid. Control Dyn. 30, 1691–1700 (2007) CrossRefGoogle Scholar
- 134.Liu, Y., Pan, Z., Stirling, D., Naghdy, F.: Control of autonomous airship. In: IEEE Int. Conf. on Robotics and Biomimetics, Guilin, China, pp. 2457–2462 (2009) Google Scholar
- 146.Meskin, N., Jiang, T., Sobhani, E., Khorasani, K., Rabbath, C.A.: A nonlinear geometric fault detection and isolation approach for almost lighter than air vehicles. In: IEEE Int. Conf. on Control Applications, pp. 1073–1078 (2007) Google Scholar
- 150.Moutinho, A.B.: Modeling and nonlinear control for airship autonomous flight. Ph.D. thesis, Univ. Tech. Lisbon, Portugal (2007) Google Scholar
- 151.Moutinho, A.B., Azinheira, J.R.: Stability and robustness analysis of the AURORA airship control system using dynamic inversion. In: IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2265–2270 (2005) Google Scholar
- 159.Nicolos, I.K., Valavanis, K.P., Tsourveloudis, N.T., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man Cybern. 33, 898–912 (2003) CrossRefGoogle Scholar
- 164.Park, C.S., Lee, H., Tahk, M.J., Bang, H.: Airship control using neural network augmented model inversion. In: IEEE Int. Conf. on Control Applications, vol. 1, pp. 558–563 (2003) Google Scholar
- 165.Pashilkar, A.A., Sundararajan, N., Saratchandran, P.: A fault-tolerant neural aided controller for aircraft auto-landing. Aerosp. Sci. Technol. 10, 49–61 (2006) CrossRefGoogle Scholar
- 171.Postlethwaite, I., Bates, D.: Robust integrated flight and propulsion controller for the Harriet aircraft. J. Guid. Control Dyn. 22, 286–290 (1999) CrossRefGoogle Scholar
- 179.Rottmann, A., Plagemann, C., Hilgero, P., Burgaud, W.: Autonomous blimp control using model free reinforcement learning in a continuous state and action space. In: IEEE IROS, San Diego, CA, pp. 1895–1900 (2007) Google Scholar
- 181.Sastry, S.: Nonlinear Systems, Analysis, Stability and Control. Springer, Berlin (1999) MATHGoogle Scholar
- 182.Schmidt, D.K.: Modeling and near-space station-keeping in control of a large high altitude airship. J. Guid. Control Dyn. 30, 540–547 (2007) CrossRefGoogle Scholar
- 193.Shue, S., Agarwal, R.: Design of automatic landing system using mixed H2/H ∞ control. J. Guid. Control Dyn. 22, 103–114 (1999) CrossRefGoogle Scholar
- 195.Singh, S.N., Steinberg, M.L., Page, A.B.: Nonlinear adaptive and sliding mode flight path control of FA 18 model. IEEE Trans. Aerosp. Electron. Syst. 39, 1250–1262 (2003) CrossRefGoogle Scholar
- 196.Solaque, L., Lacroix, S.: Airship control. In: Ollera, A., Maza, I. (eds.) Multiple Heterogeneous Unmanned Aerial Vehicles, pp. 147–188. Springer, Berlin (2007) CrossRefGoogle Scholar
- 197.Solaque, L., Pinson, Z., Duque, M.: Nonlinear control of the airship cruise flight phase with dynamical decoupling. In: IEEE Electronics, Robotics and Automotive Mechanics Conf., pp. 472–477 (2008) Google Scholar
- 198.Sonneveldt, L., Van Oort, E.R., Chu, Q.P., Mulder, J.A.: Nonlinear adaptive trajectory control applied to an F16 model, J. Guid. Control Dyn. 32, 25–39 (2009) CrossRefGoogle Scholar
- 200.Spooner, J.T., Maggiore, M., Ordonez, R., Passino, K.M.: Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques. Wiley, New York (2002) CrossRefGoogle Scholar
- 201.Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, 2nd edn. Wiley, New York (2003) Google Scholar
- 205.Takaya, T., Kawamura, H., Minagawa, Y., Yamamoto, M.: PID landing orbit motion controller for an indoor blimp robot. Artif. Life Robot. 11, 227–234 (2007) CrossRefGoogle Scholar
- 209.Ursem, R.K.: Models for evolutionary algorithms and their applications in system identification and control optimization. Ph.D. thesis, Univ. of Aarhus, Denmark (2003) Google Scholar
- 212.Wang, X., Shan, X.: Airship attitude tracking system. Appl. Math. Mech. 27, 919–926 (2006) MathSciNetMATHCrossRefGoogle Scholar
- 216.Wayshek, J., Dogan, A., Bestaoui, Y.: Investigation into the time varying mass effect on airship controller performance. In: AIAA Atmospheric Flight Mechanics, IL (2009) Google Scholar
- 218.Wie, B.: Space Vehicle Dynamics and Control. AIAA Education Series (1998) MATHGoogle Scholar
- 230.Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall, New York (1998) Google Scholar