Mission Planning

  • Yasmina Bestaoui Sebbane
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 58)


Planning can be considered as the generation of a set of paths from a set of initial states to a set of goal states of a vehicle through an environment with obstacles. Many approaches have been investigated for solving these problems. All involve some kinds of simplification aiming to capture key elements of the task in a form suitable for practical computation. For many aerial robot applications, a point vehicle representation is usually used as an assumption that simplifies the problem.


Path Planning Configuration Space Flight Planning Navigation Function Recede Horizon Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adamski, W., Herman, P., Bestaoui, Y., Kozlowski, K.: Control of an airship in case of unpredictable environment conditions. In: IEEE Conf. on Control and Fault-Tolerant Systems, Nice, France, pp. 843–848 (2010) Google Scholar
  2. 3.
    Alighanbari, M., Bertuccelli, L.F., How, J.P.: A robust approach to the UAV task assignment problem. In: IEEE Conf. on Decision and Control, San Diego, CA, pp. 5935–5940 (2006) CrossRefGoogle Scholar
  3. 6.
    Avanzini, G.: Frenet based algorithm for trajectory prediction. J. Guid. Control Dyn. 27, 127–135 (2004) CrossRefGoogle Scholar
  4. 14.
    Bestaoui, Y.: On line reference trajectory definition with joint torque and velocity constraints. Int. J. Robot. Res. 11, 75–85 (1992) CrossRefGoogle Scholar
  5. 20.
    Bestaoui, Y.: Mission plan under uncertainty for an autonomous aircraft. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 24, 1297–1307 (2010) Google Scholar
  6. 21.
    Bestaoui, Y.: Bridge monitoring by a lighter than air robot. In: AIAA Aerospace Sciences Meeting, Orlando, FL (2011) Google Scholar
  7. 22.
    Bestaoui, Y., Dicheva, S.: 3D flight plan for an autonomous aircraft. In: 48th AIAA Aerospace Sciences Meeting, Orlando, FL, Paper AIAA-1352 (2010) Google Scholar
  8. 27.
    Bestaoui, Y., Lakhlef, F.: Flight plan for an autonomous aircraft in a windy environment. In: Lozano, R. (ed.) Unmanned Aerial Vehicles Embedded Control. Wiley, New York (2010) Google Scholar
  9. 30.
    Bethke, B., Valenti, M., How, J.P.: UAV task assignment, an experimental demonstration with integrated health monitoring. IEEE J. Robot. Autom. 15, 39–44 (2008) Google Scholar
  10. 32.
    Blackmore, L., Ono, M., Bektassov, A., Williams, B.: A probabilistic particle control approximation of chance constrained stochastic predictive control. IEEE Trans. Robot. 26, 502–517 (2010) CrossRefGoogle Scholar
  11. 34.
    Bloch, A.M.: Non Holonomics Mechanics and Control. Springer, Berlin (2003) CrossRefGoogle Scholar
  12. 35.
    Bollino, K.P., Lewis, L.R., Sekhavat, P., Ross, I.M.: Pseudo-spectral optimal control: a clear road for autonomous intelligent path planning. In: AIAA Infotech@aerospace Conference, Rohnert Park, CA, AIAA 2007-2831 (2007) Google Scholar
  13. 45.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrum, S.: Principles of Robot Motion, Theory, Algorithms and Implementation. MIT Press, Cambridge (2005) Google Scholar
  14. 53.
    Davis, J.D., Chakravorty, S.: Motion planning under uncertainty: application to an unmanned helicopter. J. Guid. Control Dyn. 30, 1268–1276 (2007) CrossRefGoogle Scholar
  15. 54.
    Dicheva, S., Bestaoui, Y.: Route finding for an autonomous aircraft. In: AIAA Aerospace Sciences Meeting, Orlando, FL (2011) Google Scholar
  16. 59.
    Eele, A., Richards, A.: Path planning with avoidance using nonlinear branch and bound optimization. J. Guid. Control Dyn. 32, 384–394 (2009) CrossRefGoogle Scholar
  17. 65.
    Fahimi, F.: Autonomous Robots: Modeling, Path Planning and Control. Springer, New York (2009) CrossRefGoogle Scholar
  18. 67.
    Farault, J.: Analysis on Lie Groups: An Introduction. Cambridge Studies in Advanced Mathematics (2008) CrossRefGoogle Scholar
  19. 68.
    Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures. Comput. Aided Geom. Des. 25, 274–297 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 69.
    Fraichard, T., Scheuer, A.: From Reeds and Shepp’s to continuous curvature paths. IEEE Trans. Robot. 20, 1025–1035 (2008) CrossRefGoogle Scholar
  21. 71.
    Frazzoli, E.: Robust hybrid control for autonomous vehicle motion planning. Ph.D. thesis, MIT, Cambridge, MA (2001) Google Scholar
  22. 72.
    Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 4, 355–365 (2008) Google Scholar
  23. 78.
    Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 20, 65–100 (2010) CrossRefGoogle Scholar
  24. 81.
    Greengard, G., Ruszczynski, A.: Decision Making Under Uncertainty: Energy and Power. Springer, Berlin (2000) Google Scholar
  25. 86.
    Holdsworth, R.: Autonomous in flight path planning to replace pure collision avoidance for free flight aircraft using automatic dependent surveillance broadcast. Ph.D. thesis, Swinburne Univ. (2003) Google Scholar
  26. 91.
    Jaklic, G., Kozak, J., Krajnc, M., Vitrih, V., Zagar, E.: Geometric Lagrange interpolation by planar cubic Pythagorean hodograph curves. Comput. Aided Geom. Des. 25, 720–728 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 97.
    Kala, R., Shukla, A., Tiwari, R.: Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artif. Intell. Rev. 33, 307–327 (2010) CrossRefGoogle Scholar
  28. 103.
    Kavraki, L., Latombe, J.C.: Randomized preprocessing of configuration space for fast path planning. In: IEEE Inter. Conf. on Robotic and Automation, vol. 3, pp. 2138–2145 (1994) Google Scholar
  29. 104.
    Kawano, H.: Three dimensional obstacle avoidance of autonomous blimp flying in unknown disturbance. In: IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, pp. 123–130 (2006) Google Scholar
  30. 107.
    Khatib, O.: Real time obstacle avoidance for manipulators and mobile robots. In: IEEE Inter. Conf. on Robotics and Automation (1985) Google Scholar
  31. 109.
    Kim, J., Khosla, P.K.: Real time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8, 338–349 (1992) CrossRefGoogle Scholar
  32. 111.
    Kim, J., Keller, J., Kumar, V.: Design and verification of controllers for airships. In: IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, Las Vegas, NV, pp. 54–60 (2003) Google Scholar
  33. 115.
    Krozel, J., Penny, S., Prete, J., Mitchell, J.S.B.: Automated route generation for avoiding deterministic weather in transition airspace. J. Guid. Control Dyn. 30, 144–153 (2007) CrossRefGoogle Scholar
  34. 117.
    Kurtoglu, T., Johnson, S.B., Barszcz, E., Johnson, J.R., Robinson, P.I.: Integrating system health management into the early design of aerospace system using functional fault analysis. In: Inter. Conf. on Prognostic and Health Management (2008) Google Scholar
  35. 118.
    Kuwata, Y., Blackmore, L., Wolf, M., Fathpour, N., Newman, C., Elfes, A.: Decomposition algorithm for global reachability analysis on a time varying graph with an application to planetary exploration. In: IEEE/RSJ Int. Conf. on Intelligent Robots, pp. 3955–3960 (2009) Google Scholar
  36. 121.
    Lafferiere, G., Sussmann, J.H.: A Differential Geometric Approach to Motion Planning. Kluwer Academic, Dordrecht (1993) Google Scholar
  37. 122.
    Lam, T.M. (ed.): Aerial Vehicles. In-Tech, Vienna (2009) Google Scholar
  38. 124.
    Laugier, C., Chatila, R. (eds.): Autonomous Navigation in Dynamic Environment. Springer, Berlin (2007) Google Scholar
  39. 125.
    Lavalle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006) zbMATHCrossRefGoogle Scholar
  40. 128.
    Lennon, J.A., Atkins, E.M.: Multi-objective spacecraft trajectory optimization with synthetic agent oversight. J. Aerosp. Comput. Inf. Commun. 2, 4–24 (2005) CrossRefGoogle Scholar
  41. 136.
    Ludington, B., Johnson, E., Vachtsevanos, A.: Augmenting UAV autonomy (GTMAX). IEEE Robot. Autom. Mag. 21, 67–71 (2006) Google Scholar
  42. 140.
    Macharet, D., Neto, A.A., Campos, M.: On the generation of feasible paths for aerial robots in environments with obstacles. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3380–3385 (2009) Google Scholar
  43. 141.
    Mantegh, I., Jenkin, M., Goldenberg, A.: Path planning for autonomous mobile robots using the boundary integral equation method. J. Intell. Robot. Syst. doi: 10.1007/s10846-010-9394-y
  44. 142.
    Marigo, A., Bichi, A.: Steering driftless nonholonomic systems by control quanta. In: IEEE Inter. Conf. on Decision and Control, vol. 4, pp. 466–478 (1998) Google Scholar
  45. 145.
    McManus, J., Walker, R.: Multidisciplinary approach to intelligent unmanned airborne vehicles mission planning. J. Aircr. 43(2), 318–335 (2006) CrossRefGoogle Scholar
  46. 155.
    Murray, R.M., Sastry, S.S.: Non-holonomic motion planning: steering using sinusoids. IEEE Trans. Autom. Control 38, 700–716 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 156.
    Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994) zbMATHGoogle Scholar
  48. 159.
    Nicolos, I.K., Valavanis, K.P., Tsourveloudis, N.T., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man Cybern. 33, 898–912 (2003) CrossRefGoogle Scholar
  49. 168.
    Pettersson, P.O., Doherty, P.: Probabilistic road map based path planning for an autonomous unmanned aerial vehicle. In: Workshop on Connecting Planning Theory with Practice (2004) Google Scholar
  50. 169.
    Phillips, J.M., Bedrossian, N., Kavraki, L.E.: Guided expansive space trees: a search strategy for motion and cost constrained state spaces. In: IEEE Int. Conf on Robotics and Automation, vol. 5, pp. 3968–3973 (2004) Google Scholar
  51. 174.
    Rabier, P.J., Rheinboldt, W.C.: Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000) CrossRefGoogle Scholar
  52. 178.
    Richards, A., Schouwenaars, T., How, J., Feron, E.: Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. J. Guid. Control Dyn. 25, 755–764 (2002) CrossRefGoogle Scholar
  53. 183.
    Schouwenaars, T.: Safe trajectory planning of autonomous vehicles. Ph.D. thesis, MIT (2006) Google Scholar
  54. 184.
    Schouwenaars, T., Mettler, B., Feron, E.: Hybrid model for trajectory planning of agile autonomous vehicles. J. Aerosp. Comput. Inf. Commun. 12, 466–478 (2004) Google Scholar
  55. 185.
    Seibel, C.W., Farines, J.M., Cury, J.E.: Towards hybrid automata for the mission planning of Unmanned Aerial Vehicles. In: Antsaklis, P.J. (ed.) Hybrid Systems V, pp. 324–340. Springer, Berlin (1999) CrossRefGoogle Scholar
  56. 186.
    Selig, J.M.: Geometric Methods in Robotics. Springer, Berlin (1996) CrossRefGoogle Scholar
  57. 188.
    Serakos, D., Lin, C.F.: Three dimensional mid-course guidance state equations. In: American Control Conf., pp. 3738–3742 (1999) Google Scholar
  58. 189.
    Shaffer, P.J., Ross, I.M., Oppenheimer, M.W., Doman, D.B.: Fault tolerant optimal trajectory generator for reusable launch vehicles. J. Guid. Control Dyn. 30, 1794–1802 (2007) CrossRefGoogle Scholar
  59. 191.
    Shiller, Z., Lu, H.H.: Computation of path constrained time optimal motions with dynamic singularities. In: ASME Dynamic Systems, Measurement and Control, vol. 114, pp. 34–40 (1992) Google Scholar
  60. 194.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics, Modelling, Planning, and Control. Springer, Berlin (2009) Google Scholar
  61. 210.
    VanderBerg, J.P.: Path planning in Dynamic environments. Ph.D. thesis, Univ. of Utrecht, Netherlands (2007) Google Scholar
  62. 219.
    Williams, P.: Aircraft trajectory planning for terrain following incorporating actuator constraints. J. Aircr. 42, 1358–1362 (2005) CrossRefGoogle Scholar
  63. 220.
    Wilton, D., Rao, S., Glisson, A.: Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans. Antennas Propag. 32, 276–281 (1984) CrossRefGoogle Scholar
  64. 221.
    Wolf, M.T., Blackmore, L., Kuwata, Y., Fathpour, N., Elfes, A., Newman, C.: Probabilistic motion planning of balloons in strong uncertain wind fields. In: IEEE Int. Conf. on Robotics and Automation, pp. 1123–1129 (2010) Google Scholar
  65. 223.
    Yang, H., Zhao, Y.: Trajectory planning for autonomous aerospace vehicles amid known obstacles and conflicts. J. Guid. Control Dyn. 27, 997–1008 (2004) CrossRefGoogle Scholar
  66. 225.
    Zhang, H., Ostrowski, J.P.: Visual servoing with dynamics control of an unmanned blimp. In: IEEE Int. Conf. on Robotics and Automation, pp. 618–623 (1999) Google Scholar
  67. 226.
    Zhang, H., Ostrowski, J.P.: Periodic control for a blimp like dynamical robot. In: IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 3396–3401 (2001) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Electrical EngineeringUniversité d’EvryEvryFrance

Personalised recommendations