Materials Processing by Use of a High Intensity Magnetic Field

  • Shigeo AsaiEmail author
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 99)


Non-magnetic substances such as water, plastic, wood, etc. can be levitated when a magnetic field over 20 T is imposed [1]. This phenomenon is based on the established fact that a magnetization force, which is a well-known force attracting an iron to a magnet, is significantly intensified by a high magnetic field. Thus, in recent times, much attention has been paid to this force. As an example, a super-conducting magnet with a cryostat, which does not require liquid helium as a coolant, has been developed so that a highly intensified magnetic field, as much as 10 T, has become easily available in ordinary laboratories in universities. Effects of a high magnetic field have been examined in a large number of natural science fields such as physics, chemistry and biology and have found many new and interesting phenomena that can not be observed under the ordinary intensity of a magnetic field provided by electric or permanent magnets. For example, Fig. 5.1 shows a water surface depressed by imposition of a high magnetic field. This phenomenon is called the Moses effect for the escape from Egypt story written in the Old Testament [2]. As the second example, Fig. 5.2 shows a living frog being levitated in the bore of a super-conducting magnet, where a gravity force is balanced with a magnetization force [3]. Furthermore, Fig. 5.3 shows that the flame of a candle is deformed by a magnetic field with a gradient. In fact, this phenomenon was first found by Faraday in the nineteenth century and has been understood as an effect of the magnetization force. In addition, various interesting phenomena, such as that the vaporizing rate of water is accelerated and the absorption rate of oxygen gas into water is increased by the imposition of a high magnetic field, have been reported [4, 5]. These circumstances have in recent years given further development of the concept of “Magneto-Science”, a subject of research that impacts a variety of science in which high magnetic fields are significant. Reported phenomena relating to “Materials Science” have provided useful information on the creation of new materials, leading finally to the combined identification of “Electromagnetic Processing of Materials” [6]. Of course the Materials Science relating to a high magnetic field is obviously based on a number of principles of physics such as the magnetization force, the Lorentz force, the Zeeman effect, etc., and these principles are combined in complex ways in both physical and chemical phenomena.


Magnetic Field Magnetic Susceptibility Magnetization Force Magnetization Energy High Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet, Nature 349, 770 (1991)CrossRefGoogle Scholar
  2. 2.
    N. Hirota, T. Honma, H. Sugawara, K. Kitazawa, M. Iwasaka, S. Ueno, H. Yokoi, Y. Kakudate, S. Fujiwara, M. Kawamura, Jpn. J. Appl. Phys. 34, L991 (1995)CrossRefGoogle Scholar
  3. 3.
    M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Nakagawa, N. Hirota, K. Kitazawa, M. Syoda, in 1st Symposium on New Magnetic-science Program & Abstracts, Nov 1997, p. 226Google Scholar
  5. 5.
    Y. Ikezoe, N. Hirota, T. Sakihama, K. Mogi, H. Uetake, J. Nakagawa, K. Su Gawara, K. Kitazawa, in 1st Symposium on New Magnetic-Science Program & Abstracts, Nov 1997, p. 231Google Scholar
  6. 6.
    S. Asai, J. Jpn. Inst. Met. 61, 1271 (1997)Google Scholar
  7. 7.
    E. Beaugnon, T. Tournier, Nature 349, 470 (1991)CrossRefGoogle Scholar
  8. 8.
    A. Lusnikov, L.L. Miller, R.W. McCaullum, S. Mitra, W.C. Lee, D.C. Johnson, J. Appl. Phys. 65, 3136 (1989)CrossRefGoogle Scholar
  9. 9.
    J.E. Tkazyk, K.W. Lay, J. Mater. Res. 5, 1368 (1990)CrossRefGoogle Scholar
  10. 10.
    P. de Rango, M. Lee, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Gerni, M. Pernet, Nature 349, 770 (1991)CrossRefGoogle Scholar
  11. 11.
    R.H. Arendt, M.F. Garbauskas, K.W. Lay, J.E. Tkaczyk, Physica. C 176, 131 (1991)CrossRefGoogle Scholar
  12. 12.
    A. Holloway, R.W. McCallun, S.R. Arrasmith, J. Mater. Res. 8, 727 (1993)CrossRefGoogle Scholar
  13. 13.
    S. Stassenn, R. Cloots, A. Rulmont, F. Gillet, H. Bougrine, P.A. Godelaine, A. Dang, M. Ausloos, Physica. C 235–240, 515 (1994)CrossRefGoogle Scholar
  14. 14.
    S. Stassenn, R. Cloots, Rh Vanderbemden, P.A. Godelaine, H. Bougrine, A. Rulmont, M. Ausloos, J. Mater. Res. 11, 1082 (1996)CrossRefGoogle Scholar
  15. 15.
    N. Hirota, T. Hon-ma, Kin-zoku 65(9), 793 (1995)Google Scholar
  16. 16.
    M. Matsui, MSJ Summer School, The Basis of Applied Magnetic (MSJ, 1995, 1996), p. 1Google Scholar
  17. 17.
    K. Ohta, Ziki Kougaku no Kiso (Kyoritsu Syuppan, 1993), p. 42Google Scholar
  18. 18.
    A.E. Mikelson, Kh Karkin, J Cryst. Growth 52, 524 (1981)CrossRefGoogle Scholar
  19. 19.
    H. Yasuda, K. Tokieda, I. Ohnaka, Mater. Trans. JIM 41, 1005 (2000)Google Scholar
  20. 20.
    B.A. Legrand, R. Perrier de la Bathie, R. Tournier, in Proceedings of Int. Cong. of Electromagnetic Processing of Materials, vol. 2, Paris, May 1997, p. 309Google Scholar
  21. 21.
    P. Courtois, R. Perrier de la Bathie, R. Tournier, in Proceedings of Int. Cong. of Electromagnetic Processing of Materials, vol. 2, Paris, May 1997, p. 277Google Scholar
  22. 22.
    T. Sugiyama, M. Tahashi, K. Sassa, S. Asai, Trans. ISIJ 43, 855 (2003)CrossRefGoogle Scholar
  23. 23.
    T. Taniguchi, K. Sassa, T. Yamada, S. Asai, Mater. Trans. JIM 41, 981 (2000)Google Scholar
  24. 24.
    M. Tahashi, K. Sassa, I. Hirabayashi, S. Asai, Mater. Trans. Jim 41, 985 (2000)Google Scholar
  25. 25.
    Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada, S. Kamada, Physica C 392, 453 (2003)CrossRefGoogle Scholar
  26. 26.
    S.S. He, Y.D.D. Zhang, X. Zhao, L. Zuo, J.C.C. He, K. Watanabe, T. Zhang, G. Nishijima, C. Esling, Adv. Eng. Mater. 5, 579 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Chen, H. Maeda, K. Watanabe, M. Motokawa, Physica C 337, 160 (2000)CrossRefGoogle Scholar
  28. 28.
    P. Chen, H. Maeda, K. Watanabe, M. Motokawa, H. Kitaguchi, H. Kumakura, Physica C 324, 172 (1999)CrossRefGoogle Scholar
  29. 29.
    P. Chen, H. Maeda, K. Kakimoto, P.X. Zhang, K. Watanabe, M. Motokawa, Physica C 320, 96 (1999)CrossRefGoogle Scholar
  30. 30.
    M.H. Zimmerman, K.T. Faber, E.R. Fuller Jr., J. Am. Ceram. Soc. 80, 2725 (1997)CrossRefGoogle Scholar
  31. 31.
    E. Farrel, B.S. Chandrasekhar, M.R. DeGuire, M.M. Fang, V.G. Kogan, J.R. Clem, D.K. Finnemore, Phys. Rev. B 36, 4025 (1987)CrossRefGoogle Scholar
  32. 32.
    M. Ferreira, M.B. Maple, H. Zhou, R.R. Hake, B.W. Lee, C.L. Seaman, M.V. Kuric, R.P. Guertin, Appl. Phys. A 7, 105 (1988)CrossRefGoogle Scholar
  33. 33.
    W. Paulik, K.T. Faber, E.R. Fullar Jr., J. Am. Ceram. Soc. 77, 454 (1994)CrossRefGoogle Scholar
  34. 34.
    K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okido, S. Asai, Mater. Trans. JIM 44, 1133 (2003)CrossRefGoogle Scholar
  35. 35.
    Y. Sakka, T.S. Suzuki, N. Tanabe, S. Asai, K. Kitazawa, Jpn. J. Appl. Phys. 41, 1416 (2002)CrossRefGoogle Scholar
  36. 36.
    M. Mizushima, J. Okada, Tanso Zairyou (Kyoritsu Syuppan, 1970), p. 157Google Scholar
  37. 37.
    C. Wu, S. Li, K. Sassa, Y. Chino, K. Hattori, S. Asai, Mater. Trans. 46, 1311 (2005)CrossRefGoogle Scholar
  38. 38.
    T.S. Suzuki, H. Otsuka, Y. Sakka, K. Hiraga, K. Kitazawa, J. Jpn. Soc. Powder Powder Metallurgy 47, 1010 (2000)CrossRefGoogle Scholar
  39. 39.
    T.S. Suzuki, Y. Sakka, K. Kitazawa, Adv. Eng. Mater. 3, 490 (2001)CrossRefGoogle Scholar
  40. 40.
    T. Kimura, Polym. J. 35, 823 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Li, K. Sassa, K. Iwai, S. Asai, Mater. Trans. 45, 3124 (2004)CrossRefGoogle Scholar
  42. 42.
    T. Kimura, M. Yamato, W. Koshimizu, M. Koike, T. Kawai, Langmuir 16, 858 (2000)CrossRefGoogle Scholar
  43. 43.
    J. Akiyama, H. Asano, K. Iwai, S. Asai, J. Jpn. Inst. Met. 71, 108 (2007)CrossRefGoogle Scholar
  44. 44.
    T. Kimura, M. Yoshino, Langmuir 21, 4805 (2005)CrossRefGoogle Scholar
  45. 45.
    T. Kimura, F. Kimura, M. Yoshino, Langmuir 22, 3464 (2006)CrossRefGoogle Scholar
  46. 46.
    C. Wu, Y. Murakami, K. Sassa, K. Iwai, S. Asai, Key Eng. Mater. 75, 284 (2005)Google Scholar
  47. 47.
    M. Tahashi, M. Ishihara, K. Sassa, S. Asai, Mater. Trans. JIM 44, 285 (2003)CrossRefGoogle Scholar
  48. 48.
    Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa, Nature 393, 749 (1998)CrossRefGoogle Scholar
  49. 49.
    S. Asai, Zairyou Den-zi Purossesin-gu (Uchida Rokaku Ho, Tokyo, 2000), p. 103Google Scholar
  50. 50.
    N. Wakayama, J. Jpn. Inst. Met. 61, 1272 (1997)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Japan Science and Technology AgencyNagoya Minami-kuJapan

Personalised recommendations