Skip to main content

Role of Novel Nutraceuticals Garcinol, Plumbagin and Mangiferin in the Prevention and Therapy of Human Malignancies: Mechanisms of Anticancer Activity

  • Chapter
  • First Online:
Nutraceuticals and Cancer

Abstract

Nutraceuticals from natural sources have been investigated for their putative chemopreventive and cancer therapeutic properties for the last few decades. The interest in these compounds is in part due to their pleiotropic effects and relatively non-toxic nature. A large number of such nutraceuticals are under detailed investigations worldwide but most of them suffer from the lack of sufficient bioavailability in humans. The identification and characterization of novel natural compounds with sufficient anticancer potential is therefore an ongoing process. This article is a summary of anticancer activity of three such novel nutraceuticals, namely garcinol, plumbagin and mangiferin. These compounds have shown promising biological activity in preliminary studies by targeting multiple signaling pathways. In particular, it seems that the inhibition of NF-κB pathway is one of the major mechanism through which these compounds exhibit their anticancer and apoptosis-inducing effects. The data on their anticancer activity is just emerging and the information on their bioavailability is still insufficient to predict their future application in the clinical settings. In this article, we have surveyed the available literature to summarize the mechanisms of anticancer activity of these three novel nutraceuticals. We also discuss the challenges and possible solutions to realize the dream on the translational potential of these compounds into clinical practice for the prevention and/or treatment of human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Banerjee S, Wang Z, et al (2008) Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. J Cell Biochem 105:1461–1471

    PubMed  CAS  Google Scholar 

  • Ahmad A, Banerjee S, Wang Z et al (2009) Aging and inflammation: etiological culprits of cancer. Curr Aging Sci 2:174–186

    PubMed  CAS  Google Scholar 

  • Ahmad A, Wang Z, Ali R et al (2010) Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells. J Cell Biochem 109:1134–1141

    PubMed  CAS  Google Scholar 

  • Ahmad A, Sakr WA, Rahman KMW (2011a) Role of nuclear factor-kappa B signaling in anticancer properties of indole compounds. J Exp Clin Med 3:55–62

    CAS  Google Scholar 

  • Ahmad A, Wang Z, Wojewoda C et al (2011b) Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- KappaB signaling. Front Biosci (Elite Ed) 3:1483–1492

    Google Scholar 

  • Amazzal L, Lapotre A, Quignon F et al (2007) Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells. Neurosci Lett 418:159–164

    PubMed  CAS  Google Scholar 

  • Aryanathan S (2009) Chemical examination of three Plumbago species. Ph.D. Thesis, Sastra University, Thanjavur, India

    Google Scholar 

  • Aziz MH, Dreckschmidt NE, Verma AK (2008) Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 68:9024–9032

    PubMed  CAS  Google Scholar 

  • Balsano C, Alisi A (2009) Antioxidant effects of natural bioactive compounds. Curr Pharm Des 15:3063–3073

    PubMed  CAS  Google Scholar 

  • Barreto JC, Trevisan MT, Hull WE et al (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J Agric Food Chem 56:5599–5610

    PubMed  CAS  Google Scholar 

  • Bertolini F, Novaroli L, Carrupt PA et al (2007) Novel screening assay for antioxidant protection against peroxyl radical-induced loss of protein function. J Pharm Sci 96:2931–2944

    PubMed  CAS  Google Scholar 

  • Bringmann G, Rudenauer S, Irmer A et al (2008) Antitumoral and antileishmanial dioncoquinones and ancistroquinones from cell cultures of Triphyophyllum peltatum (Dioncophyllaceae) and Ancistrocladus abbreviatus (Ancistrocladaceae). Phytochemistry 69:2501–2509

    PubMed  CAS  Google Scholar 

  • Buchholz TA, Garg AK, Chakravarti N et al (2005) The nuclear transcription factor kappaB/bcl-2 pathway correlates with pathologic complete response to doxorubicin-based neoadjuvant chemotherapy in human breast cancer. Clin Cancer Res 11:8398–8402

    PubMed  CAS  Google Scholar 

  • Campos-Esparza MR, Sanchez-Gomez MV, Matute C (2009) Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 45:358–368

    PubMed  CAS  Google Scholar 

  • Chandrasekaran B, Nagarajan B (1981) Metabolism of echitamine and plumbagin in rats. J Biosci 3:395–400

    CAS  Google Scholar 

  • Chen CA, Chang HH, Kao CY et al (2009) Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology 9:797–809

    PubMed  CAS  Google Scholar 

  • Chen CS, Lee CH, Hsieh CD et al (2011) Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat 125:73–87

    PubMed  CAS  Google Scholar 

  • Cheng P, Peng ZG, Yang J et al (2007) [The effect of mangiferin on telomerase activity and apoptosis in leukemic K562 cells]. Zhong Yao Cai 30:306–309

    PubMed  CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. CSIR, New Delhi, India

    Google Scholar 

  • Dar A, Faizi S, Naqvi S et al (2005) Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28:596–600

    PubMed  CAS  Google Scholar 

  • de P, Sr., Figueiredo MR, Aragao TV et al (2003) Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem Inst Oswaldo Cruz 98:959–961

    Google Scholar 

  • Demma J, Hallberg K, Hellman B (2009) Genotoxicity of plumbagin and its effects on catechol and NQNO-induced DNA damage in mouse lymphoma cells. Toxicol In Vitro 23:266–271

    PubMed  CAS  Google Scholar 

  • Ding Y, Chen ZJ, Liu S et al (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57:111–116

    PubMed  CAS  Google Scholar 

  • Dutt UC (1877) The materia medica of the Hindus. Thacker, Spink & Co., Calcutta, India

    Google Scholar 

  • Garcia-Rivera D, Delgado R, Bougarne N et al (2011) Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett 305:21–31

    CAS  Google Scholar 

  • Gomathinayagam R, Sowmyalakshmi S, Mardhatillah F et al (2008) Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res 28: 785–792

    PubMed  CAS  Google Scholar 

  • Hadi SM, Asad SF, Singh S et al (2000) Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50:167–171

    PubMed  CAS  Google Scholar 

  • Hamed W, Brajeul S, Mahuteau-Betzer F et al (2006) Oblongifolins A-D, Polyprenylated Benzoylphloroglucinol Derivatives from Garcinia oblongifolia. J Nat Products 69:774–777

    CAS  Google Scholar 

  • Han D, Chen C, Zhang C et al (2010) Determination of mangiferin in rat plasma by liquid-liquid extraction with UPLC-MS/MS. J Pharm Biomed Anal 51:260–263

    PubMed  CAS  Google Scholar 

  • Hong J, Kwon SJ, Sang S et al (2007) Effects of garcinol and its derivatives on intestinal cell growth: inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 42:1211–1221

    PubMed  CAS  Google Scholar 

  • Hsieh YJ, Lin LC, Tsai TH (2006) Measurement and pharmacokinetic study of plumbagin in a conscious freely moving rat using liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 844:1–5

    PubMed  CAS  Google Scholar 

  • Hsu MF, Raung SL, Tsao LT et al (1997) Examination of the inhibitory effect of norathyriol in formylmethionyl-leucyl-phenylalanine-induced respiratory burst in rat neutrophils. Free Radic Biol Med 23:1035–1045

    PubMed  CAS  Google Scholar 

  • Hsu YL, Cho CY, Kuo PL et al (2006) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther 318:484–494

    PubMed  CAS  Google Scholar 

  • Jayaprakasha GK, Sakariah KK (2002) Determination of organic acids in leaves and rinds of Garcinia indica (Desr.) by LC. J Pharm Biomed Anal 28:379–384

    PubMed  CAS  Google Scholar 

  • Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Jena BS, Jayaprakasha GK, Singh RP et al (2002) Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J Agric Food Chem 50:10–22

    PubMed  CAS  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436

    PubMed  CAS  Google Scholar 

  • Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    PubMed  CAS  Google Scholar 

  • Khan NS, Ahmad A, Hadi SM (2000) Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact 125:177–189

    PubMed  CAS  Google Scholar 

  • Kumar S, Chattopadhyay SK, Darokar MP et al (2007) Cytotoxic activities of xanthochymol and isoxanthochymol substantiated by LC-MS/MS. Planta Med 73:1452–1456

    PubMed  CAS  Google Scholar 

  • Kuo YH, Chang CI, Li SY et al (1997) Cytotoxic constituents from the stems of Diospyros maritima. Planta Med 63:363–365

    PubMed  CAS  Google Scholar 

  • Kuo PL, Hsu YL, Cho CY (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    PubMed  CAS  Google Scholar 

  • Lemus-Molina Y, Sanchez-Gomez MV, gado-Hernandez R et al (2009) Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. Neurotoxicology 30: 1053–1058

    PubMed  CAS  Google Scholar 

  • Liao CH, Sang S, Ho CT et al (2005) Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. J Cell Biochem 96:155–169

    PubMed  CAS  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    PubMed  CAS  Google Scholar 

  • Mallavadhani UV, Sahu G, Muralidhar J (2002) Screening of Plumbago Species for the Bio-active Marker Plumbagin. Pharmaceut Biol 40:508–511

    CAS  Google Scholar 

  • Mandala Rayabandla SK, Aithal K, Anandam A et al (2010) Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv 17:103–113

    PubMed  Google Scholar 

  • Manthey JA, Perkins-Veazie P (2009) Influences of harvest date and location on the levels of beta-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). J Agric Food Chem 57:10825–10830

    PubMed  CAS  Google Scholar 

  • Martinez G, Giuliani A, Leon OS et al (2001) Effect of Mangifera indica L. extract (QF808) on protein and hepatic microsome peroxidation. Phytother Res 15:581–585

    CAS  Google Scholar 

  • Masullo M, Bassarello C, Suzuki H et al (2008) Polyisoprenylated benzophenones and an unusual polyisoprenylated tetracyclic xanthone from the fruits of Garcinia cambogia. J Agric Food Chem 56:5205–5210

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Akao Y, Kobayashi E et al (2003) Cytotoxic benzophenone derivatives from Garcinia species display a strong apoptosis-inducing effect against human leukemia cell lines. Biol Pharm Bull 26:569–571

    PubMed  CAS  Google Scholar 

  • Montoya J, Varela-Ramirez A, Estrada A et al (2004) A fluorescence-based rapid screening assay for cytotoxic compounds. Biochem Biophys Res Commun 325:1517–1523

    PubMed  CAS  Google Scholar 

  • Nadkarni KM (1954) Indian materia medica. Popular Book Depot., Bombay

    Google Scholar 

  • Nair S, Nair RR, Srinivas P et al (2008) Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcinog 47:22–33

    PubMed  CAS  Google Scholar 

  • Nazeem S, Azmi AS, Hanif S et al (2009) Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. Mutagenesis 24:413–418

    PubMed  CAS  Google Scholar 

  • Noratto GD, Bertoldi MC, Krenek K et al (2010) Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. J Agric Food Chem 58:4104–4112

    PubMed  CAS  Google Scholar 

  • Padhye S, Ahmad A, Oswal N et al (2009a) Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2:38

    PubMed  Google Scholar 

  • Padhye S, Banerjee S, Chavan D et al (2009b) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26:2438–2445

    PubMed  CAS  Google Scholar 

  • Padhye S, Yang H, Jamadar A et al (2009c) New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 26:1874–1880

    PubMed  CAS  Google Scholar 

  • Padhye S, Ahmad A, Oswal N et al (2010a) Fluorinated 2'-hydroxychalcones as garcinol analogs with enhanced antioxidant and anticancer activities. Bioorg Med Chem Lett 20:5818–5821

    PubMed  CAS  Google Scholar 

  • Padhye S, Dandawate P, Yusufi M et al (2010b) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev. doi:10.1002/med.20235

    Google Scholar 

  • Pan MH, Chang WL, Lin-Shiau SY et al (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474

    PubMed  CAS  Google Scholar 

  • Parasramka MA, Gupta SV (2011) Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells. Nutr Cancer 63:456–465

    PubMed  CAS  Google Scholar 

  • Pardo-Andreu GL, Barrios MF, Curti C et al (2008a) Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver. Pharmacol Res 57:79–86

    PubMed  CAS  Google Scholar 

  • Pardo-Andreu GL, Paim BA, Castilho RF et al (2008b) Mangifera indica L. extract (Vimang) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacol Res 57:332–338

    CAS  Google Scholar 

  • Parimala R, Sachdanandam P (1993) Effect of Plumbagin on some glucose metabolising enzymes studied in rats in experimental hepatoma. Mol Cell Biochem 125:59–63

    PubMed  CAS  Google Scholar 

  • Pauletti PM, Castro-Gamboa I, Siqueira Silva DH et al (2003) New antioxidant C-glucosylxanthones from the stems of Arrabidaea samydoides. J Nat Prod 66:1384–1387

    PubMed  CAS  Google Scholar 

  • Peng ZG, Luo J, Xia LH et al (2004) [CML cell line K562 cell apoptosis induced by mangiferin]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 12:590–594

    PubMed  CAS  Google Scholar 

  • Percival SS, Talcott ST, Chin ST et al (2006) Neoplastic transformation of BALB/3T3 cells and cell cycle of HL-60 cells are inhibited by mango (Mangifera indica L.) juice and mango juice extracts. J Nutr 136:1300–1304

    PubMed  CAS  Google Scholar 

  • Powolny AA, Singh SV (2008) Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm Res 25:2171–2180

    PubMed  CAS  Google Scholar 

  • Prabhu S, Jainu M, Sabitha KE et al (2006) Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats. J Ethnopharmacol 107:126–133

    PubMed  CAS  Google Scholar 

  • Prasad VS, Devi PU, Rao BS et al (1996) Radiosensitizing effect of plumbagin on mouse melanoma cells grown in vitro. Indian J Exp Biol 34:857–858

    PubMed  CAS  Google Scholar 

  • Rajendran P, Ekambaram G, Sakthisekaran D (2008a) Protective role of mangiferin against Benzo(a)pyrene induced lung carcinogenesis in experimental animals. Biol Pharm Bull 31:1053–1058

    PubMed  CAS  Google Scholar 

  • Rajendran P, Ekambaram G, Sakthisekaran D (2008b) Effect of mangiferin on benzo(a)pyrene induced lung carcinogenesis in experimental Swiss albino mice. Nat Prod Res 22:672–680

    PubMed  CAS  Google Scholar 

  • Rajendran P, Ekambaram G, Sakthisekaran D (2008c) Cytoprotective effect of mangiferin on benzo(a)pyrene-induced lung carcinogenesis in swiss albino mice. Basic Clin Pharmacol Toxicol 103:137–142

    PubMed  CAS  Google Scholar 

  • Rodeiro I, Donato MT, Martinez I et al (2008) Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture. Toxicol In Vitro 22:1242–1249

    PubMed  CAS  Google Scholar 

  • Sandur SK, Ichikawa H, Sethi G et al (2006) Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 281:17023–17033

    PubMed  CAS  Google Scholar 

  • Sandur SK, Pandey MK, Sung B et al (2010) 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization. Mol Cancer Res 8:107–118

    PubMed  CAS  Google Scholar 

  • Sang S, Pan MH, Cheng X et al (2001) Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol and their antitumor activities. Tetrahedron 57:9931–9938

    CAS  Google Scholar 

  • Sang S, Liao CH, Pan MH et al (2002) Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 58:10095–10102

    CAS  Google Scholar 

  • Sankar R, Devamanoharan P, Raghupathi G et al (1987) Lipid peroxidation in plumbagin administered rats. J Biosci 12:267–271

    CAS  Google Scholar 

  • Sarkar FH, Li Y (2008) NF-kappaB: a potential target for cancer chemoprevention and therapy. Front Biosci 13:2950–2959

    PubMed  CAS  Google Scholar 

  • Sarkar A, Sreenivasan Y, Ramesh GT et al (2004) beta-D-Glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappaB but potentiates apoptosis. J Biol Chem 279:33768–33781

    PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y, Wang Z et al (2008) NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol 27:293–319

    PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y, Wang Z et al (2009) Cellular signaling perturbation by natural products. Cell Signal 21:1541–1547

    PubMed  CAS  Google Scholar 

  • Shieh JM, Chiang TA, Chang WT et al (2010) Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-kappaB and AP-1 via ERK signaling pathway in A549 human lung cancer cells. Mol Cell Biochem 335:181–193

    PubMed  CAS  Google Scholar 

  • Shih YW, Lee YC, Wu PF et al (2009) Plumbagin inhibits invasion and migration of liver cancer HepG2 cells by decreasing productions of matrix metalloproteinase-2 and urokinase- plasminogen activator. Hepatol Res 39:998–1009

    PubMed  CAS  Google Scholar 

  • Siegel R, Ward E, Brawley O et al (2011) Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin

    Google Scholar 

  • Singh UV, Udupa N (1997) Reduced toxicity and enhanced antitumor efficacy of betacyclodextrin plumbagin inclusion complex in mice bearing Ehrlich ascites carcinoma. Indian J Physiol Pharmacol 41:171–175

    PubMed  CAS  Google Scholar 

  • Singh S, Asad SF, Ahmad A et al (2001) Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Lett 169:139–146

    PubMed  CAS  Google Scholar 

  • Srinivas G, Annab LA, Gopinath G et al (2004a) Antisense blocking of BRCA1 enhances sensitivity to plumbagin but not tamoxifen in BG-1 ovarian cancer cells. Mol Carcinog 39:15–25

    PubMed  CAS  Google Scholar 

  • Srinivas P, Gopinath G, Banerji A et al (2004b) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40:201–211

    PubMed  CAS  Google Scholar 

  • Staudt LM (2010) Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2:a000109

    PubMed  Google Scholar 

  • Tertil M, Jozkowicz A, Dulak J (2010) Oxidative stress in tumor angiogenesis- therapeutic targets. Curr Pharm Des 16:3877–3894

    PubMed  CAS  Google Scholar 

  • Thasni KA, Rakesh S, Rojini G et al (2008) Estrogen-dependent cell signaling and apoptosis in BRCA1-blocked BG1 ovarian cancer cells in response to plumbagin and other chemotherapeutic agents. Ann Oncol 19:696–705

    PubMed  CAS  Google Scholar 

  • Tilak JC, Adhikari S, Devasagayam TP (2004) Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep 9:219–227

    PubMed  CAS  Google Scholar 

  • Ullah MF, Ahmad A, Zubair H et al (2011) Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol Nutr Food Res 55:553–559

    PubMed  CAS  Google Scholar 

  • Wang CC, Chiang YM, Sung SC et al (2008) Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett 259:82–98

    PubMed  CAS  Google Scholar 

  • Wu CH, Lee CH, Ho YS (2011) Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy. Clin Cancer Res 17:3533–3541

    PubMed  CAS  Google Scholar 

  • Xu KH, Lu DP (2010) Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leuk Res 34:658–665

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Ariga T, Yoshimura Y et al (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Ninomiya K, Shimoda H et al (2002) Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol Pharm Bull 25:72–76

    PubMed  CAS  Google Scholar 

  • Yoshimi N, Matsunaga K, Katayama M et al (2001) The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Lett 163:163–170

    PubMed  CAS  Google Scholar 

  • Zhao YL, Lu DP (2006) [Effects of plumbagin on the human acute promyelocytic leukemia cells in vitro]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 14:208–211

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahmad, A., Padhye, S., Sarkar, F.H. (2012). Role of Novel Nutraceuticals Garcinol, Plumbagin and Mangiferin in the Prevention and Therapy of Human Malignancies: Mechanisms of Anticancer Activity. In: Sarkar, F. (eds) Nutraceuticals and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2630-7_10

Download citation

Publish with us

Policies and ethics