Introduction to Linear Viscoelasticity

Chapter
Part of the Mathematical and Analytical Techniques with Applications to Engineering book series (MATE)

Abstract

We have assumed in the classical theory of elasticity that the constitutive law (the strain-stress relations) is linear and independent on time. As well, we have assumed the hypothesis of small deformations with respect to unity, so that the principle of superposition of effects may be applied. On the other hand, many bodies do not respect the above hypotheses, appearing the influence of the time too.

Keywords

Complex Modulus Relaxation Function Relaxation Modulus Linear Viscoelasticity Harmonic Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

A. Books

  1. 1.
    Bland, D.R.: The Theory of Linear Viscoelasticity. Pergamon Press, London (1960)Google Scholar
  2. 2.
    Kecs, W.:Elasticitate şi vâscoelasticitate (Elasticity and Viscoelasticity). Ed. Tehnică, Bucureşti (1986)Google Scholar
  3. 3.
    Kolski, H.: Volny napryazheniya v tverdykh telakl (Stress Waves in Solid Bodies). Inostr. Lit., Moskva (1955)Google Scholar
  4. 4.
    Mandel, J.: Cours de mécanique des milieux continus. I, II. Gauthier–Vilars, Paris (1966)Google Scholar
  5. 5.
    Rabotnov, Yu. N.: Elements of Hereditary Solid Mechanics. Mir Publ, Moecow (1980)Google Scholar
  6. 6.
    Rabotnov, Yu. N., A, Ilyushin: Methoden der Viskoelastizitätstheorie. VEB Fachbuchverlag, Leipzig (1970)Google Scholar
  7. 7.
    Riesz, F., Sz Nagy, B.: Leçons d’analyse fonctionnelle. Budapest (1972)Google Scholar

B. Papers

  1. 8.
    Alain, M.: Viscoélasticité linéaire et fonctions complètement monotones. J. de Mécanique 4, 12 (1978)Google Scholar
  2. 9.
    Alfrey, T.: Non-homogeneous stresses in viscoelastic media. Quart. Appl. Math. 2, 113 (1944)MathSciNetGoogle Scholar
  3. 10.
    Gurtin, M., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Rat. Mech. Anal. 11, 291 (1962)MathSciNetCrossRefGoogle Scholar
  4. 11.
    Kecs, W.: On the equations on the one-dimensional problem of the linear viscoelastic solid. Letters Appl. Engng. Sci. Pergamon Press, 5, 389 (1977)Google Scholar
  5. 12.
    Kecs, W.: On models of one-dimensional linear viscoelastic solids. Rev. Roum. Sci. Techn.; Méc. Appl. 24, 3 (1979)MathSciNetGoogle Scholar
  6. 13.
    Kecs, W.: Sur les équations des solides linéaires viscoélastiques. Rev. Roum. Sci. Techn.; Méc. Appl., 25, 3 (1980)Google Scholar
  7. 14.
    Kecs, W.: On grouping models of viscoelastic solids. Bull. Math. Soc. Sci. Math. Roum. 28(76) (1984)Google Scholar
  8. 15.
    Lee, E.H.: Stress analysis in viscoelastic bodies. Quart. Appl. Math. 13, 183 (1955)MathSciNetGoogle Scholar
  9. 16.
    Read, W.T.: Stress analysis for compressible viscoelastic materials. J. Appl. Phys. 21, 671 (1950)MathSciNetADSCrossRefGoogle Scholar
  10. 17.
    Tsien, H.S.: A generalization of Alfrey’s theorem for viscoelastic media. Quart. Appl. Math. 8, 104 (1950)MathSciNetGoogle Scholar
  11. 18.
    Volterra, V.: Sulle equazioni integro-differenziali della teoria dell’elasticità. Atti. R. Accad. Lincei. 18, 295 (1909)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania

Personalised recommendations