Anisotropic and Non-homogeneous Bodies

Chapter
Part of the Mathematical and Analytical Techniques with Applications to Engineering book series (MATE)

Abstract

We remind that between the fundamental hypotheses of the theory of elasticity presented in Sect. 2.1.2.2 are that of isotropy and homogeneity; the study made till now has respected these hypotheses. Hereafter we will consider the cases in which these hypotheses are no more respected.

Keywords

Elastic Constant Symmetry Plane Stress Function Plane State Volume Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

A. Books

  1. 1.
    Beju, I., Soós, E., Teodorescu, P.P.: Euclidean Tensor Calculus with Applications. Abacus Press, Tunbridge Wells (1983). (Ed. Tehnică, Bucureşti)Google Scholar
  2. 2.
    Brilla, J.: Anizotropické steny (Anisotropic Plates). Slov. Akad. Vied., Bratislava (1958)Google Scholar
  3. 3.
    Cristescu, N.D., Crăciun, E.M., Soós, E.: Mechanics of Elastic Composites. Chapman and Hall/CRC, Boca Raton (2004)MATHGoogle Scholar
  4. 4.
    Hearmon, R.F.S.: An Introduction to Applied Anisotropic Elasticity. Clarendon Press, Oxford (1961)Google Scholar
  5. 5.
    Lekhnitskiĭ, S.G.: Teoriya uprugosti anizotropnogo tela (Theory of Elasticity of Anisotropis Bodies). Ogiz, Moskva-Leningrad (1947)Google Scholar
  6. 6.
    Love, A.-E.-H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1934)Google Scholar

B. Papers

  1. 7.
    Bekhterev, P.: Analiticheskoe issledovanie obobshchenovo zakona Guka (Analytical study of the generalized hooke law). J. Russk. fiz.-khim. obshchestva. VII (1925)Google Scholar
  2. 8.
    Bishop, R.E.D.: Dynamical problems of plane stress and plane strain. Q.J. Mech. Appl. Math. VI, 250 (1953)MATHCrossRefGoogle Scholar
  3. 9.
    Chentsov, N.G.: Issledovanie faneri, kak ortotropnoi plastinki (Application of bodies as orthotropic plates). Tekhn. Zametki Tsagi. (1936)Google Scholar
  4. 10.
    Cristea, M.: Legea lui Hooke plană neizotropă (Plane anisotropic hooke’s law). Com. Acad. Rom. I, 1007 (1951)MathSciNetGoogle Scholar
  5. 11.
    Fridman, M.M.: Matematicheskaya teoriya anizotropnykh sred (Mathematical theory of anisotropic media). Prikl. Mat. Mekh. XIV, 321 (1950)Google Scholar
  6. 12.
    Green, A.E.: A note on stress systems in aelotropic materials. Proc. Roy. Soc. 162, 173 (1939). (173, 416, 420 (1920))ADSGoogle Scholar
  7. 13.
    Iacovache, M. Aplicarea funcţiilor monogene în sensul lui Feodorov în teoria elasticităţii corpurilor cu izotropie transversă (Application of the monogenic functions in the sense of feodorov in the theory of elasticity of the bodies with transverse isotropy). Rev. Univ. şi Polit., Bucureşti. 58 (1952)Google Scholar
  8. 14.
    Lang, H.A.: The affine transformation for orthotropic plane-stress and plane-strain problems. J. Appl. Mech. 23, 1 (1956)MathSciNetMATHGoogle Scholar
  9. 15.
    Marguerre, K.: Ebenes und achsensymmetrisches Problem der Elastizitätstheorie. Z.A.M.M. 13, 437 (1933)Google Scholar
  10. 16.
    Mikhlin, S. G.: Ploskaya deformatsya v anizotropnoŭ srede (Plane deformation in anisotropic media). Tr. seism. inst., ANSSSR. t (1936)Google Scholar
  11. 17.
    Moisil, A.: Asupra ecuaţiilor echilibrului elastic plan pentru corpurile cu izotropie transversă (On the equations of plane elastic equilibrium for bodies with transverse isotropy). Lucr. Ses. Acad. Rom. 308 (1950)Google Scholar
  12. 18.
    Rabinovich, A. L.: Ob uprugikh postoiannykh i prochnosti anizotropnykh materialov (On elastic strength of anisotropic materials). Trudy. Tsagi. (1946)Google Scholar
  13. 19.
    Reissner, E.: A contribution to the problem of elasticity of nonisotropic materials. Phil. Mag. (1940)Google Scholar
  14. 20.
    Reissner, H.: Z.A.M.M. 11, 1 (1931)CrossRefGoogle Scholar
  15. 21.
    Savin, G. N.: Osnovnaya ploskaya zadacha teorii uprugosti dlya anizotropnoŭ sredy (odnosvyaznaya becknechnaya oblast’) (Fundamental plane problem of the theory of elasticity for an isotropic body (Simple connected infinite domain)). Tr. Inst. Stroit. Mekh., ANSSSR (1938)Google Scholar
  16. 22.
    Savin, G.N.: Ob odnom metode resheniya osnovnoĭ ploskoĭ staticheskoĭ zadachi teorii uprugosti anizotropnoĭ sredy (On a method of solving the fundamental plane statical problem of the theory of elasticity of the anisotropic media). Tr. Inst. Matem. ANSSSR (1939)Google Scholar
  17. 23.
    Sokolnicoff, I.S.: Approximate methods of solution of twodimensional problems in anisotropic elasticity. Proc. Symp. Appl. Math. (1950)Google Scholar
  18. 24.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. I. Relaţii între eforturi unitare şi deformaţii specifice (On the plane problem of elasticity of some anisotropic bodies. I. Relations between stresses and strains). Com. Acad. Rom. VII, 395 (1957)Google Scholar
  19. 25.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. II. Corpuri cu izotropie transversă (On the plane problem of elasticity of some anisotropic bodies. II. Bodies with transverse isotropy). Com. Acad. Rom. VII, 401 (1957)Google Scholar
  20. 26.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. III. Corpuri ortotrope (On the plane problem of elasticity of some anisotropic bodies. III. Orthotropie bodies). Com. Acad. Rom. VII, 503 (1957)Google Scholar
  21. 27.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. IV. Corpuri cu un plan de simetrie elastică (On the plane problem of elasticity of some anisotropic bodies. IV. Bodies with a plane of elastic symmetry). Com. Acad. Rom. VII, 509 (1957)Google Scholar
  22. 28.
    Teodorescu, P. P: Asupra problemei plane a elasticităţii unor corpuri anizotrope. V. Corpuri cu o axă de simetrie elastică de ordinul al treilea (On the plane problem of elasticity of some anisotropic bodies. V. Bodies with an axis of elastic symmetry of third order). Bul. Acad. Rom. VII, 641 (1957)Google Scholar
  23. 29.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. VI. Corpuri cu o axă de simetrie elastică de ordinul patru (On the plane problem of elasticity of some anisotropic bodies. VI. Bodies with an axis of elastic symmetry of fourth order). Bul. Acad. Rom. VII, 753 (1957)Google Scholar
  24. 30.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. VII. Corpuri acţionate de forţe masice oarecare (On the plane problem of elasticity of some anisotropic bodies. VII. Bodies acted upon by arbitrary volume forces). Com. Acad. Rom. VIII, 887 (1958)Google Scholar
  25. 31.
    Teodorescu, P.P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. VIII. Influenţa variaţiei de temperatură (On the plane problem of elasticity of some anisotropic bodies. VIII. Influence of the temperature variation). Com. Acad. Rom. VIII, 1119 (1958)Google Scholar
  26. 32.
    Teodorescu, P. P.: Asupra problemei plane a elasticităţii unor corpuri anizotrope. IX. Cazul micilor mişcări elastice (On the plane problem of elasticity of some anisotropic bodies. IX. Case of small elastic motions). Com. Acad. Rom. VIII, 1243 (1958)Google Scholar
  27. 33.
    Teodorescu, P. P.: Ůber das Kinetische Problem nichthomogener elasticher Körper. Bull. Acad. Pol. Sci., sér. Sci. Techn. XII, 595 (1964)Google Scholar
  28. 34.
    Teodorescu, P. P., Predeleanu, M.: Quelques considérations sur le problème des corps élastiques hétérogènes (Non-homogeneity in Elasticity and Plasticity). In: IUTAM-Symposium, pp. 31 (1958)Google Scholar
  29. 35.
    Teodorescu, P. P., Predeleanu, M.: Quelques considérations sur le problème des corps élastiques hétérogènes. Bull. Acad. Pol. Sci., sér. Sci. Techn. VII, 81 (1959)Google Scholar
  30. 36.
    Teodorescu, P. P., Predeleanu, M.: Ůber das ebene Problem nichthomogeneuer elastischer Körper. Acta Techn. Acad. Sci. Hung. XXVII, 349 (1959)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania

Personalised recommendations