Skip to main content

Surface Modification of Biodegradable Polyesters for Soft and Hard Tissue Regeneration

  • Chapter
  • First Online:
Book cover Thin Films and Coatings in Biology

Abstract

Synthetic biodegradable polyesters are commonly used in biomedical applications, especially as three-dimensional porous scaffolds for soft and hard tissue engineering. In addition to straightforward fabrication procedures, good mechanical strength and adjustable degradation properties all contribute to the appeal of these polymers. Still, scaffolds synthesized from polyesters are hydrophobic in nature and lack cell recognition signals. Coating or modifying their surface with molecules that enhance cellular adhesion and activity is therefore necessary to make them suitable as biomaterials, while preserving their bulk properties. This chapter reviews current strategies used to modify the surface of polyester-based scaffolds, with a specific focus on the modifications necessary to stimulate soft and hard tissue regeneration. The methods reviewed mostly involve two steps. During the first step, the polymer hydrophilicity is increased by generating carboxylic, amino or hydroxyl groups on the surface by either chemically or photochemically breaking the polymeric ester bonds, or by plasma treatment. This step also allows introducing functional groups on the polymeric surface, which can be used as anchors to bind biomolecules in the next step. In the second step, biomolecules of different types are bound to the previously modified polymer surface, to stimulate a specific tissue response. After providing an overview and many recent examples of the strategies used to achieve both steps, the chapter concludes by summarizing the main achievements to date and the challenges that still remain open.

Hesameddin Mahjoubi and Sara Abdollahi contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sipe, J.D., Tissue engineering and reparative medicine. Reparative Medicine: Growing Tissues and Organs, 961 (2002)

    Google Scholar 

  2. Hench, L.L.: Biomaterials. Science 208, 4446 (1980)

    Article  Google Scholar 

  3. Castner, D.G., Ratner, B.D.: Biomedical surface science: Foundations to frontiers. Surf. Sci. 500(1–3), 28–60 (2002)

    Article  ADS  Google Scholar 

  4. Kim, S.-H., Turnbull, J., Guimond, S.: Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 2 (2011)

    Article  Google Scholar 

  5. Jiao, Y.P., Cui, F.Z.: Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2(4), R24–R37 (2007)

    Article  ADS  Google Scholar 

  6. Zeb, G., et al.: Decoration of graphitic surfaces with Sn nanoparticles through surface functionalization using diazonium chemistry. Langmuir 1, 13042–13050 (2012)

    Article  Google Scholar 

  7. Sabir, M., Xu, X., Li, L.: A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44(21), 5713–5724 (2009)

    Article  ADS  Google Scholar 

  8. Metcalfe, A.D., Ferguson, M.W.J.: Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. Roy. Soc. Interf. 4, 14 (2007)

    Article  Google Scholar 

  9. Aragon, J., et al.: Development and characterization of a novel bioresorbable and bioactive biomaterial based on polyvinyl acetate, calcium carbonate and coralline hydroxyapatite. Mater. Res. -Ibero-Am. J. Mater. 14, 1 (2011)

    Google Scholar 

  10. Le Guehennec, L., Layrolle, P., Daculsi, G.: A review of bioceramics and fibrin sealant. Eur. Cells Mater. 8, 1–11 (2004)

    Google Scholar 

  11. Dhandayuthapani, B., et al.: Polymeric scaffolds in tissue engineering application: A review. Int. J. Polymer Sci. 2011, 1–19 (2011)

    Article  Google Scholar 

  12. Thomson, R.C., et al.: Biodegradable polymer scaffolds to regenerate organs. Biopolymers Ii 122, 245–274 (1995)

    Article  Google Scholar 

  13. Cheung, H.-Y., et al.: A critical review on polymer-based bio-engineered materials for scaffold development. Compos. B-Eng. 38, 3 (2007)

    Google Scholar 

  14. Seal, B.L., Otero, T.C., Panitch, A.: Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R-Reports 34, 4–5 (2001)

    Article  Google Scholar 

  15. Gunatillake, P.A., Adhikari, R.: Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003)

    Google Scholar 

  16. Wang, S.G., Cui, W.J., Bei, J.Z.: Bulk and surface modifications of polylactide. Anal. Bioanal. Chem. 381(3), 547–556 (2005)

    Article  Google Scholar 

  17. Lin Y et al (2006) Surface modification of poly (L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomater 2(2):155–164

    Google Scholar 

  18. Vasita, R., Shanmugam, I.K., Katt, D.S.: Improved biomaterials for tissue engineering applications: Surface modification of polymers. Curr. Top. Med. Chem. 8(4), 341–353 (2008)

    Article  Google Scholar 

  19. Ma, Z.W., Mao, Z.W., Gao, C.Y.: Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf. B-Biointerf. 60(2), 137–157 (2007)

    Article  Google Scholar 

  20. Jacobs, T., et al.: Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem. Plasma Process. 32(5), 1039–1073 (2012)

    Article  Google Scholar 

  21. Ratner, B.D.: Plasma deposition for biomedical applications—a brief review. J. Biomater. Sci. Polymer Edn. 4(1), 3–11 (1992)

    Article  MathSciNet  Google Scholar 

  22. Urano, Y., et al.: Production of 1-m size uniform plasma by modified magnetron-typed RF discharge with a subsidiary electrode for resonance. Thin Solid Films 316, 1–2 (1998)

    Article  Google Scholar 

  23. Raizer, Y.P.: J. Atmos. Terr. Phys. 55(10), 1487 (1993). (Gas discharge physics: 1991, p. 449. Springer. Heidelberg, DM 148.00 hb, ISBN 3-540-19462-2)

    Google Scholar 

  24. Ohl, A., Schroder, K.: Plasma-induced chemical micropatterning for cell culturing applications: a brief review. Surf. Coat. Technol. 116, 820–830 (1999)

    Article  Google Scholar 

  25. Boxman, R.L., Goldsmith, S., Greenwood, A.: Twenty-five years of progress in vacuum arc research and utilization. IEEE Trans. Plasma Sci. 25(6), 1174–1186 (1997)

    Article  ADS  Google Scholar 

  26. Yushkov, G.Y., et al.: Effect of multiple current spikes on the enhancement of ion charge states of vacuum arc plasmas. J. Appl. Phys. 87(12), 8345–8350 (2000)

    Article  ADS  Google Scholar 

  27. Oks, E.M., Yushkov, G.Y., Anders, A.: A summary of recent experimental research on ion energy and charge states of pulsed vacuum arcs. 23rd international symposium on discharges and electrical insulation in vacuum, 2008. ISDEIV 2008

    Google Scholar 

  28. Amoruso, S., et al.: Characterization of laser-ablation plasmas. J. Phys. B-Atomic Molecular Opt. Phys. 32(14), R131–R172 (1999)

    Article  ADS  Google Scholar 

  29. Chan, C.M., Ko, T.M., Hiraoka, H.: Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 24(1–2), 3–54 (1996)

    Google Scholar 

  30. Inagaki, N., Plasma Surface Modification and Plasma Polymerization. Pennsylvania, Technomic Publishing Company, Inc (1996)

    Google Scholar 

  31. Chu, P.K., et al.: Plasma immersion ion implantation, Äîa fledgling technique for semiconductor processing. Mater. Sci. Eng. R: Reports 17(6–7), 207–280 (1996)

    Article  Google Scholar 

  32. Yang, J., Bei, J.Z., Wang, S.G.: Enhanced cell affinity of poly (D, L-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23, 12 (2002)

    Google Scholar 

  33. Kiaei, D., Hoffman, A.S., Horbett, T.A.: Tight-binding of albumin to glow-discharge treated polymers. J. Biomater. Sci. Polymer Edn 4, 1 (1992)

    Google Scholar 

  34. Garfinkle, A.M., et al.: Effects of a tetrafluoro ethylene glow-discharge on patency of small diameter dacron vascular grafts. Trans. Am. Soc. Artif. Inter. Organs 30, 169 (1984)

    Google Scholar 

  35. Gombotz, W.R., Hoffman, A.S.: Gas-discharge techniques for biomaterial modification. CRC Crit. Rev. Biocompat. 4, 1 (1987)

    Google Scholar 

  36. Bazaka, K., et al.: Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 7(5), 2015–2028 (2011)

    Article  Google Scholar 

  37. Shen, H., et al.: The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials 29, 15 (2008)

    Article  Google Scholar 

  38. Shen, H., et al.: The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds. Biomaterials 30, 18 (2009)

    Google Scholar 

  39. Chen, B., et al.: Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 28, 6 (2007)

    Google Scholar 

  40. Han, B., et al.: Collagen-targeted BMP3 fusion proteins arrayed on collagen matrices or porous ceramics impregnated with Type I collagen enhance osteogenesis in a rat cranial defect model. J. Orthopaedic Res. 20, 4 (2002)

    Google Scholar 

  41. Khorasani, M.T., Mirzadeh, H., Irani, S.: Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion. Radiat. Phys. Chem. 77, 3 (2008)

    Google Scholar 

  42. Demina, T., et al.: DC discharge plasma modification of chitosan/gelatin/PLLA films: Surface properties, chemical structure and cell affinity. Surf. Coat. Technol. 207, 508–516 (2012)

    Article  Google Scholar 

  43. van Wachem, P.B., et al.: Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 8(5), 323–328 (1987)

    Article  Google Scholar 

  44. Chen, H., et al.: Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol. 48(1), 13–19 (2011)

    Article  Google Scholar 

  45. Demirbilek, M.E., et al.: Oxidative stress parameters of L929 cells cultured on plasma-modified PDLLA scaffolds. Appl. Biochem. Biotechnol. 164, 6 (2011)

    Google Scholar 

  46. Tian, H., et al.: Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science 37, 2 (2012)

    Google Scholar 

  47. De Bartolo, L., et al.: Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials 23, 12 (2002)

    Google Scholar 

  48. Groth, T., et al.: Interaction of human skin fibroblasts with moderate wettable polyacrylonitrile-copolymer membranes. J. Biomed. Mater. Res. 61, 2 (2002)

    Google Scholar 

  49. Croll, T.I., et al.: Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects. Biomacromolecules 5(2), 463–473 (2004)

    Article  Google Scholar 

  50. Zhu, Y.B., et al.: Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 10, 1–2 (2004)

    Google Scholar 

  51. Park, G.E., et al.: Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 26(16), 3075–3082 (2005)

    Article  Google Scholar 

  52. Ghasemi-Mobarakeh, L., et al.: Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Mater. Sci. Eng. C 30(8), 1129–1136 (2010)

    Article  Google Scholar 

  53. Zhu, H.G., Ji, J., Shen, J.C.: Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility. Biomaterials 25, 1 (2004)

    Google Scholar 

  54. Xie, Z., et al.: Electrospun poly(D, L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment. J. Appl. Polym. Sci. 122(2), 1219–1225 (2011)

    Article  Google Scholar 

  55. Thapa, A., et al.: Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24(17), 2915–2926 (2003)

    Article  Google Scholar 

  56. Zhang, H.N., Lin, C.Y., Hollister, S.J.: The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 30(25), 4063–4069 (2009)

    Article  Google Scholar 

  57. Zhang, H.N., et al.: Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng. Part A 16(11), 3441–3448 (2010)

    Article  ADS  Google Scholar 

  58. Zhu, Y.B., et al.: Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5), 861–868 (2007)

    Article  Google Scholar 

  59. Jao, Y.P., et al.: Effect of hydrolysis pretreatment on the formation of bone-like apatite on poly(L-lactide) by mineralization in simulated body fluids. J. Bioactive Compat. Polymers 22(5), 492–507 (2007)

    Article  Google Scholar 

  60. Poncinepaillard, F., Chevet, B., Brosse, J.C.: Modification of isotactic polypropylene by a cold-plasma or an electron-beam and grafting of the acrylic-acid onto these activated polymers. J. Appl. Polym. Sci. 53(10), 1291–1306 (1994)

    Article  Google Scholar 

  61. Steffens, G.C., et al.: High density binding of proteins and peptides to poly(D, L-lactide) grafted with polyacrylic acid. Biomaterials 23(16), 3523–3531 (2002)

    Article  Google Scholar 

  62. Ke, Y., et al.: Bioactive surface modification on amide-photografted poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biomed. Mater.6, 2 (2011)

    Google Scholar 

  63. Grondahl, L., Chandler-Temple, A., Trau, M.: Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Surface functionalization for tissue engineering applications. Biomacromolecules 6(4), 2197–2203 (2005)

    Article  Google Scholar 

  64. Shibata, Y., et al.: Azidation of polyesters having pendent functionalities by using NaN3 or DPPA-DBU and photo-crosslinking of the azidopolyesters. Polym. J. 43(3), 272–278 (2011)

    Article  Google Scholar 

  65. Bat, E., et al.: Crosslinking of trimethylene carbonate and D, L-Lactide (Co-) polymers by gamma irradiation in the presence of pentaerythritol triacrylate. Macromol. Biosci. 11(7), 952–961 (2011)

    Article  Google Scholar 

  66. Ma, Z., Mao, Z., Gao, C.: Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf. B 60(2), 137–157 (2007)

    Article  Google Scholar 

  67. Shin, H., Jo, S., Mikos, A.G.: Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353–4364 (2003)

    Article  Google Scholar 

  68. Gamboa-Martinez, T.C., Gomez Ribelles J.L., Gallego Ferrer, G.: Fibrin coating on poly (L-lactide) scaffolds for tissue engineering. J. Bioactive Compat. Polymers, 26(5), 464–477 (2011)

    Google Scholar 

  69. Zhang, L.F., et al.: Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Mater. Sci. Eng., C 28(1), 141–149 (2008)

    Article  Google Scholar 

  70. Yun, H.S., et al.: Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Int. J. Nanomed. 6, 2521–2531 (2011)

    Article  Google Scholar 

  71. Tsai, W.B., et al.: Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater. 7(12), 4187–4194 (2011)

    Article  Google Scholar 

  72. Dupont, K., et al.: Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res., pp. 1–14

    Google Scholar 

  73. Davis, H.E., et al.: Osteogenic response to BMP-2 of hMSCs grown on apatite-coated scaffolds. Biotechnol. Bioeng. 108(11), 2727–2735 (2011)

    Article  Google Scholar 

  74. Yanoso-Scholl, L., et al.: Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering. J. Biomed. Mater. Res., Part A 95A(3), 717–726 (2010)

    Article  Google Scholar 

  75. Dee, K.C., Puleo, D.A., Bizios, R.: An introduction to tissue-biomaterial interactions, Hoboken, N.J., Wiley-Liss, p. 228

    Google Scholar 

  76. Fu, K., Klibanov, A.M., Langer, R.: Protein stability in controlled-release systems. Nat. Biotechnol. 18(1), 24–25 (2000)

    Article  Google Scholar 

  77. Neff, J.A., Caldwell, K.D., Tresco, P.A.: A novel method for surface modification to promote cell attachment to hydrophobic substrates. J. Biomed. Mater. Res. 40(4), 511–519 (1998)

    Article  Google Scholar 

  78. Goddard, J.M., Hotchkiss, J.H.: Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 32(7), 698–725 (2007)

    Article  Google Scholar 

  79. Edlund, U., Sauter, T., Albertsson, A.C.: Covalent VEGF protein immobilization on resorbable polymeric surfaces. Polym. Adv. Technol. 22(1), 166–171 (2011)

    Article  Google Scholar 

  80. Li, L., Wu, J., Gao, C.: Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. Colloids Surf., B 85(1), 12–18 (2011)

    Article  MathSciNet  Google Scholar 

  81. Nakajima, N., Ikada, Y.: Mechanism of amide formation by carbodiimide for bioconjugation in aqueous-media. Bioconjug. Chem. 6(1), 123–130 (1995)

    Article  Google Scholar 

  82. Chen, J.-P., Su C.-H.: Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia, 7, 1 (2011)

    Google Scholar 

  83. Chen, J.P., Chiang, Y.P.: Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid. J. Membrane Sci. 270, 1–2 (2006)

    Google Scholar 

  84. Grafahrend, D., et al.: Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat. Mater. 10(1), 67–73 (2011)

    Article  ADS  Google Scholar 

  85. Koo, A.N., et al.: Enhanced bone regeneration by porous poly(L-lactide) scaffolds with surface-immobilized nano-hydroxyapatite. Macromol. Res. 18(10), 1030–1036 (2010)

    Article  Google Scholar 

  86. Wu, J.D., et al.: Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. Chin. Sci. Bull. 54(18), 3174–3180 (2009)

    Article  Google Scholar 

  87. Brandley, B.K., Schnaar, R.L.: Covalent attachment of an Arg-Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces–support of fibroblast adhesion and long-term growth. Anal. Biochem. 172(1), 270–278 (1988)

    Article  Google Scholar 

  88. Desai, N.P., Hubbell, J.A.: Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12(2), 144–153 (1991)

    Article  Google Scholar 

  89. Quirk, R.A., et al.: Controlling biological interactions with poly(lactic acid) by surface entrapment modification. Langmuir 17(9), 2817–2820 (2001)

    Article  Google Scholar 

  90. Liu, W.G., et al.: Effects of baicalin-modified poly(D, L-lactic acid) surface on the behavior of osteoblasts. J. Mater. Sci. Mater. Med. 14(11), 961–965 (2003)

    Article  Google Scholar 

  91. Duan, B., et al.: Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation. Front. Mater. Sci. 5(1), 57–68 (2011)

    Article  Google Scholar 

  92. Bertrand, P., et al.: Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun. 21(7), 319–348 (2000)

    Article  MathSciNet  Google Scholar 

  93. Hammond, P.T.: Engineering materials layer-by-layer: Challenges and opportunities in multilayer assembly. AIChE J. 57(11), 2928–2940 (2011)

    Article  MathSciNet  Google Scholar 

  94. Li, X., et al.: Coating Electrospun Poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24(24), 14145–14150 (2008)

    Article  Google Scholar 

  95. Zhu, Y., Sun, Y.: The influence of polyelectrolyte charges of polyurethane membrane surface on the growth of human endothelial cells. Colloids Surf. B 36(1), 49–55 (2004)

    Article  MathSciNet  Google Scholar 

  96. Stendahl, J.C., et al.: Modification of fibrous poly(L-lactic acid) scaffolds with self-assembling triblock molecules. Biomaterials 25(27), 5847–5856 (2004)

    Article  Google Scholar 

  97. Cui, H., Webber, M.J., Stupp, S.I.: Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Pept. Sci. 94(1), 1–18 (2010)

    Article  Google Scholar 

  98. Mahjoubi, H., Cerruti, M.: Homogeneous surface modification of poly (D, L-lactic acid) scaffolds for orthopedic applications: a non-destructive method based on diazonium chemistry. Chem. Mater. (2012)

    Google Scholar 

  99. George, A., Veis, A.: Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev. 108(11), 4670–4693 (2008)

    Article  Google Scholar 

  100. Song, J., Malathong, V., Bertozzi, C.R.: Mineralization of synthetic polymer scaffolds: A bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127(10), 3366–3372 (2005)

    Article  Google Scholar 

  101. D’Andrea, L.D., et al.: Targeting angiogenesis: Structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proceedings of the national academy of sciences of the United States of America, 102(40), 14215–14220 (2005)

    Google Scholar 

  102. Leslie-Barbick, J.E., et al.: The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32(25), 5782–5789 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cerruti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahjoubi, H., Abdollahi, S., Cerruti, M. (2013). Surface Modification of Biodegradable Polyesters for Soft and Hard Tissue Regeneration. In: Nazarpour, S. (eds) Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2592-8_7

Download citation

Publish with us

Policies and ethics