Skip to main content

Bacteria as a Therapeutic Approach in Cancer Therapy

  • Chapter
  • First Online:
Bacteria and Cancer

Abstract

In the wake of growing global burden of cancer, newer cancer prevention and control modalities are being explored. One such novel experimental strategy is the implication of natural and genetically modified non-pathogenic bacterial species as potential antitumor agents. This therapy is based on the fact that live, attenuated or genetically modified non-pathogenic bacterial species are capable of multiplying selectively in tumours and inhibiting their growth. Moreover due to their selectivity for tumour tissues, these bacteria and their spores also serve as ideal vectors for delivering therapeutic proteins to tumours. Bacterial toxins too have been explored for their anti-cancer potential. Although the oncolytic potential of bacteria was recognized several hundred years back yet the bacterial therapy failed to establish because of certain drawbacks associated with it like toxicity, lack of specificity and inconvenient administration of bacteria. However the emergence of gene therapy and recombinant DNA technology has revived the interest in bacterial therapy and a variety of applications employing bacteria have been investigated. Out of these, the most potential and promising strategies are bacteria based gene-directed enzyme prodrug therapy, anaerobic bacteria vector-mediated cancer therapy and immunotherapy. These therapies have demonstrated significant efficacy in preclinical studies and some are currently under clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5FC:

5-fluorocytosine

5FU:

5-fluorouracil

ALL:

Acute lymphoblastic leukaemia

AMP:

Adenosine monophosphate

BCG:

Bacillus Calmette-Guerin

BoNT:

Botulinum neurotoxin

BR96 sFv-PE40:

Single-chain immunotoxin. SGN-10 is composed of the fused gene products encoding the translocating and ADP-ribosylating domains of Pseudomonas exotoxin (PE40) and the variable heavy (V(H)) and variable light (V(L)) regions of BR96 monoclonal antibody

CD:

Cytosine deaminase

CDTs:

Cytolethal distending toxins

Cif:

Cycle inhibiting factor

CMV:

Cytomegalovirus

CNF:

Cytotoxic necrotizing factor

COBALT:

Combination bacteriolytic therapy

CPE:

Clostridium perfringens enterotoxin

CPE-R:

CPE receptor

CPG2:

Carboxypeptidase G2

DCA:

Dichloroacetate

DNA:

Deoxyribonucleic acid

DT:

Diphtheria toxin

EF2:

Elongation factor-2

EGF:

Epidermal growth factor

EHEC:

Enterohaemorrhagic E. coli

EPEC:

Enteropathogenic E. coli

erb-38:

A recombinant immunotoxin that targets the erbB2 receptor

G-CSF:

Granulocyte colony stimulating factor

HA22:

(CAT-8015) is an immunotoxin composed of an anti-CD22 variable fragment linked to a 38 kDa truncated protein derived from Pseudomonas exotoxin A.

HAMLET:

Human alpha-lactalbumin made lethal to tumour cells

HB-EGF:

Heparin-binding epidermal growth factor like growth factor

hGM-CSF:

Human granulocyte-macrophage-colony stimulating factor

hIL-12:

Human interleukin-12

HSVTK:

Herpes simplex virus thymidine kinase

IL13-PE38QQR:

Cintredekin besudotox

IL-3:

Interleukin-3

IL-4:

Interleukin-4

IL-4-PE38KDEL:

A chimeric protein composed of circularly permuted IL-4 and a truncated form of Pseudomonas exotoxin (PE), into recurrent malignant high-grade gliomas

IL4-P:

Aeruginosa exotoxin (IL4-PE NBI-3001), tumour growth factor (TGF) alpha-P. aeruginosa exotoxin (TP-38), IL13-P. aeruginosa exotoxin (IL13-PE38), and transferrin-C. diphtheriae toxin (TransMID(trade mark), Tf-CRM107

IL4-PE:

Interleukin-4-Pseudomonas exotoxin

LMB-1:

Is composed of monoclonal antibody B3 chemically linked to PE38 a genetically engineered form of Pseudomonas exotoxin

LMB-2:

CD25-directed immunotoxin

LMB-2:

Recombinant immunotoxin anti-Tac(Fv)-PE38

Mab:

Monoclonal antibody

mGM-CSF:

granulocyte-macrophage-colony stimulating factor

mIL-12:

Murine interleukin 12

NBI-3001:

IL-4 Pseudomonas exotoxin protein

NR:

Nitroreductase

OVB3-PE:

An immunotoxin composed of a murine monoclonal antibody reactive with human ovarian cancer and conjugated to Pseudomonas exotoxin (PE)

PE38:

Is a 38-kDa derivative of the 66-kDa Pseudomonas exotoxin (PE)

TAPET:

Tumour Amplified Protein Expression Therapy

TAPET-CD, VNP20029:

VNP20029genetically modified Salmonella typhimurium expressing cytosine deaminase

Tf:

Transferrin

Tf-CRM 107:

Transferrin-DT conjugate

TGF-α:

Transforming growth factor a

TNF-α:

Tumour necrosis factor α

TP-38:

A recombinant chimeric targeted toxin composed of the EGFR binding ligand TGF-alpha and a genetically engineered form of the Pseudomonas exotoxin PE-38

TP40:

Transforming growth factor alpha-Pseudomonas exotoxin-40

VEGF:

Vascular endothelial growth factor

References

  • Abd El-Aal H, Habib E, Mishrif M (2005) Wilms’ tumor: the experience of the pediatric unit of Kasr El-Aini Center of Radiation Oncology and Nuclear Medicine (NEMROCK). J Egypt Natl Canc Inst 17(4):308–311

    PubMed  Google Scholar 

  • Al-Ramadi BK, Fernandez-Cabezudo MJ, El-Hasasna H et al (2008) Attenuated bacteria as effectors in cancer immunotherapy. Ann N Y Acad Sci 1138(1):351–357

    Article  PubMed  CAS  Google Scholar 

  • Ansiaux R, Gallez B (2007) Use of botulinum toxins in cancer therapy. Expert Opin Investig Drugs 16(2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Avogadri F, Martinoli C, Petrovska L et al (2005) Cancer immunotherapy based on killing of salmonella-infected tumor cells. Cancer Res 65(9):3920–3927

    Article  PubMed  CAS  Google Scholar 

  • Ballard TE, Melander C (2008) Kinamycin-mediated DNA cleavage under biomimetic conditions. Tetrahedron Lett 49:3157

    Article  CAS  Google Scholar 

  • Bermudes D, Zheng L, King IC (2002) Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr Opin Drug Discov Devel 5(2):194–199

    PubMed  CAS  Google Scholar 

  • Bettegowda C, Dang LH, Abrams R et al (2003) Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci USA 100(25):15083–15088

    Article  PubMed  CAS  Google Scholar 

  • Carey R, Holland J, Whang H et al (1967) Clostridial oncolysis in man. Eur J Cancer 3:37–46

    Article  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL et al (1975) An endotoxin induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670

    Article  PubMed  CAS  Google Scholar 

  • Cheng CM, Lu YL, Chuang KH et al (2008) Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gen Ther 15:393–401

    Article  CAS  Google Scholar 

  • Cheong I, Huang X, Bettegowda C et al (2006) A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science 314(5803):1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Cunningham C, Nemunaitis J (2001) A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther 12(12):1594–1596

    PubMed  CAS  Google Scholar 

  • Dang LH, Bettegowda C, Huso DL et al (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA 98(26):15155–15160

    Article  PubMed  CAS  Google Scholar 

  • Dang LH, Bettegowda C, Agrawal N et al (2004) Targeting vascular and avascular compartments of tumors with C. novyi-NT and antimicrotubule agents. Cancer Biol Ther 3(3):326–337

    Article  PubMed  CAS  Google Scholar 

  • Diaz LA Jr, Cheong I, Foss CA et al (2005) Pharmacologic and toxicologic evaluation of C.novyi-NT spores. Toxicol Sci 88(2):562–575

    Article  PubMed  CAS  Google Scholar 

  • Falnes PO, Ariansen S, Sandwig K et al (2000) Requirement for prolonged action in the cytosol for optimal protein synthesis inhibition by diphtheria toxin. J Biol Chem 275:4363–4368

    Article  PubMed  CAS  Google Scholar 

  • Fan D, Yano S, Shinohara H et al (2002) Targeted therapy against human lung cancer in nude mice by high affinity recombinant antimesothelin single chain Fv immunotoxin. Mol Cancer Ther 1:595–600

    PubMed  CAS  Google Scholar 

  • Fiorentini C, Matarrese P, Straface E et al (1998) Toxin induced activation of Rho GTP-binding protein increases Bcl-2 expression and influences mitochondrial homeostasis. Exp Cell Res 242:341–350

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE, Rossi P, Kuzel TM et al (2002) Diphtheria fusion protein therapy of chemoresistant malignancies. Curr Cancer Drug Targets 2:19–36

    Article  PubMed  CAS  Google Scholar 

  • Fujimori M, Amano J, Taniguchi S (2003) The genus Bifidobacterium for cancer gene therapy. Curr Opin Drug Discov Devel 5:200–203

    Google Scholar 

  • Garland L, Gitlitz B, Ebbinghaus S et al (2005) Phase I trial of intravenous IL-4 pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J Immunother 28(4):376–381

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MR, Heimbrook DC, Russo P et al (1995) Phase I clinical study of the recombinant oncotoxin TP40 in superficial bladder cancer. Clin Cancer Res 1(1):57–61

    PubMed  CAS  Google Scholar 

  • Greenfield L, Johnson VG, Youle RJ (1987) Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 238:536–539

    Article  PubMed  CAS  Google Scholar 

  • Hagihara N, Walbridge S, Olson AW et al (2000) Vascular protection by chloroquine during brain tumor therapy with Tf-CRM 107. Cancer Res 60:230–234

    PubMed  CAS  Google Scholar 

  • Hatefi A, Canine BF (2009) Perspectives in vector development for systemic cancer gene therapy. Gene Ther Mol Biol 13(A):15–19

    PubMed  CAS  Google Scholar 

  • Hayashi A, Nishida Y, Yoshii S et al (2009) Immunotherapy of ovarian cancer with cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guérin: effect of lymphadenectomy. Cancer Sci 100(10):1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Hoption Cann SA, van Netten JP, van Netten C (2003) Dr. William Coley and tumour regression: a place in history or in the future. Postgrad Med J 79:672–680

    PubMed  CAS  Google Scholar 

  • Hough CD, Sherman Baust CA, Pizer ES (2000) Large scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 60:6281–6287

    PubMed  CAS  Google Scholar 

  • Jain RK (2001) New approaches for the treatment of cancer. Adv Drug Deliv Rev 46:149–168

    Article  PubMed  CAS  Google Scholar 

  • Julien B, Shah S (2002) Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chemother 46(9):2772

    Article  PubMed  CAS  Google Scholar 

  • Karsten V, Pike J, Troy K et al (2001) A strain of Salmonella typhimurium VNP20009 expressing an anti-angiogenic peptide from platelet factor-4 has enhanced anti-tumor activity. Proc Annu Meet Am Assoc Cancer Res 42:3700

    Google Scholar 

  • Keller R, Keist R, Joller P et al (1995) Coordinate up and down modulation of inducible nitric oxide synthase, nitric oxide production and tumoricidal activity in bone marrow derived mononuclear phagocytes by lipopolysaccharides and gram negative bacteria. Biochem Biophys Res Commun 211:183–189

    Article  PubMed  CAS  Google Scholar 

  • Khatua S, Nair C, Ghosh K (2004) Immune-mediated thrombocytopenia following dactinomycin therapy in a child with alveolar rhabdomyosarcoma: the unresolved issues. J Pediatr Hematol Oncol 26(11):777–779

    Article  PubMed  Google Scholar 

  • Kim SH, Castro F, Paterson Y et al (2009) High efficacy of a Listeria based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res 69(14):5860–5866

    Article  PubMed  CAS  Google Scholar 

  • King I, Itterson M, Bermudes D (2009) Tumor-targeted Salmonella typhimurium overexpressing cytosine deaminase: a novel, tumor-selective therapy. Methods Mol Biol 542:649–659

    Article  PubMed  CAS  Google Scholar 

  • Kokai Kun JF, Mcclane BA (1997) Determination of functional regions of Clostridium perfringens enterotoxin through deletion analysis. Clin Infect Dis 25:S165–S167

    Article  PubMed  CAS  Google Scholar 

  • Kokai Kun JF, Benton K, Wieckowski EU et al (1999) Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun 67:5634–5641

    PubMed  CAS  Google Scholar 

  • Kominsky SL, Vali M, Korz D (2004) Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol 164:1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Kreitman RJ, Wilson WH, Robbins D et al (1999) Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 94(10):3340–3348

    PubMed  CAS  Google Scholar 

  • Kreitman RJ, Wilson WH, White JD et al (2000) Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 18(8):1622–1636

    PubMed  CAS  Google Scholar 

  • Kreitman RJ, Wilson WH, Bergeron K et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345(4):241–247

    Article  PubMed  CAS  Google Scholar 

  • Kreitman RJ, Squires DR, Stetler-Stevenson M et al (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 23(27):6719–6729

    Article  PubMed  CAS  Google Scholar 

  • Kunwar S, Chang SM, Prados MD et al (2006) Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 20(4):E15

    PubMed  Google Scholar 

  • Kunwar S, Prados MD, Chang SM, Cintredekin Besudotox Intraparenchymal Study Group et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 25(7):837–844

    Article  PubMed  CAS  Google Scholar 

  • Lanzerin M, Sand O, Olsnes S (1996) GPI-anchored diphtheria toxin receptor allows membrane translocation of the toxin without detectable ion channel activity. EMBO J 15:725–734

    Google Scholar 

  • Li X, Fu GF, Fan YR et al (2003) Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther 10:105–111

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Spinka TL, Le TX et al (1999) Tumor directed delivery and amplification of tumor-necrosis factor-α (TNF) by attenuated Salmonella typhimurium. Clin Cancer Res 5:3822

    Google Scholar 

  • Liong MT (2008) Roles of probiotics and prebiotics in colon cancer prevention-postulated mechanisms and in-vivo evidence. Int J Mol Sci 9(5):854–863

    Article  PubMed  CAS  Google Scholar 

  • Liu SC, Minton NP, Giaccia AJ et al (2002) Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther 9:291–296

    Article  PubMed  CAS  Google Scholar 

  • Loeffler M, Le’Negrate G, Krajewska M et al (2007) Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA 104(31):12879–12883

    Article  PubMed  CAS  Google Scholar 

  • Louie GV, Yang W, Bowman ME et al (1997) Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol Cell 1:67–68

    Article  PubMed  CAS  Google Scholar 

  • Low KB, Ittensohn M, Lin S et al (1999) VNP20009, a genetically modified Salmonella typhimurium for treatment of solid tumors. Proc Am Assoc Cancer Res 40:851

    Google Scholar 

  • Luo X, Ittensohn M, Low B et al (1999) Genetically modified Salmonella typhimurium inhibited growth of primary tumors and metastase. Proc Annu Meet Am Assoc Cancer Res 40

    Google Scholar 

  • Luo X, Li Z, Shen SY et al (2001) Genetically armed Salmonella typhimurium delivered therapeutic gene and inhibited tumor growth in preclinical models. Proc Annu Meet Am Assoc Cancer Res 42

    Google Scholar 

  • Malmgren RA, Flanigan CC (1955) Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res 15:473–478

    PubMed  CAS  Google Scholar 

  • Mengesha A, Dubois L (2009) Clostridia in anti-tumor therapy. In: Bruggemann H, Gottschalk G (eds) Clostridia: molecular biology in the post-genomic era, 3rd edn. Caister Academic Press, Norfolk

    Google Scholar 

  • Michl P, Buchholz M, Rolke M (2001) Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gasrtoenterology 121:678–684

    Article  CAS  Google Scholar 

  • Minton NP (2003) Clostridia in cancer therapy. Nat Rev Microbiol 1:237–242

    Article  PubMed  CAS  Google Scholar 

  • Mussai F, Campana D, Bhojwani D et al (2010) Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol 150(3):352–358

    Article  PubMed  CAS  Google Scholar 

  • Nauts HC (1980) The beneficial effects of bacterial infections on host resistance to cancer: end result in 449 cases, 2nd edn, Monograph no. 8. Cancer research institute, New York

    Google Scholar 

  • Nauts HC, McLaren JR (1990) Coley’s toxins the first century. Adv Exp Med Biol 267:483–500

    PubMed  CAS  Google Scholar 

  • Nauts HC, Fowler G, Bogatko F (1953) A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man. Acta Med Scand 276:1–103

    CAS  Google Scholar 

  • Nougayrede JP, Taieb F, De Rycke J et al (2005) Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol 13:103–110

    Article  PubMed  CAS  Google Scholar 

  • Oswald E, Sugai M, Labigne A et al (1994) Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci USA 91:3814–3818

    Article  PubMed  CAS  Google Scholar 

  • Pai LH, Bookman MA, Ozols RF et al (1991) Clinical evaluation of intraperitoneal Pseudomonas exotoxin immunoconjugate OVB3-PE in patients with ovarian cancer. J Clin Oncol 9(12):2095–2103

    PubMed  CAS  Google Scholar 

  • Pai LH, Wittes R, Setser A et al (1996) Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med 2(3):350–353

    Article  PubMed  CAS  Google Scholar 

  • Pai-Scherf LH, Villa J, Pearson D et al (1999) Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin Cancer Res 5(9):2311–2315

    PubMed  CAS  Google Scholar 

  • Parney IF, Kunwar S, McDermott M et al (2005) Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J Neurosurg 102(2):267–275

    Article  PubMed  CAS  Google Scholar 

  • Pastan I (1997) Targeted therapy of cancer with recombinant immunotoxins. Biochim Biophys Acta 1333:C1–C6

    PubMed  CAS  Google Scholar 

  • Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–4544

    PubMed  CAS  Google Scholar 

  • Posey JA, Khazaeli MB, Bookman MA et al (2002) A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 8(10):3092–3099

    PubMed  CAS  Google Scholar 

  • Powell DJ Jr, Felipe-Silva A, Merino MJ et al (2007) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179(7):4919–4928

    PubMed  CAS  Google Scholar 

  • Prakash V, Winston WT (2010) Update on options for treatment of metastatic castration-resistant prostate cancer. Oncol Targets Ther 3:39–51

    Google Scholar 

  • Punj V, Bhattacharya S, Saint-Dic D et al (2004) Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 13:2362–2374

    Google Scholar 

  • Puri RK (1999) Development of a recombinant interleukin-4-Pseudomonas exotoxin for therapy of glioblastoma. Toxicol Pathol 27(1):53–57

    Article  PubMed  CAS  Google Scholar 

  • Rafter J (2004) The effects of probiotics on colon cancer development. Nutr Res Rev 17:277–284

    Article  PubMed  Google Scholar 

  • Rand RW, Kreitman RJ, Patronas N et al (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 6(6):2157–2165

    PubMed  CAS  Google Scholar 

  • Reisser O, Pance A, Jeanin JF (2002) Mechanism of anti-tumor effect of lipid A. Bioassays 24:284–289

    Article  CAS  Google Scholar 

  • Renault J, Baron M, Mailliet P et al (1981) Heterocyclic quinones.2.Quinoxaline-5,6-(and 5–8)-diones – Potential antitumoral agents. Eur J Med Chem 16(6):545–550

    CAS  Google Scholar 

  • Ribi EE, Granger DL, Milner KC et al (1975) Tumor regression caused by endotoxins and mycobacterial fractions. J Natl Cancer Inst 55:1253–1257

    PubMed  CAS  Google Scholar 

  • Richardson MA, Ramirez T, Russell NC et al (1999) Coley toxins immunotherapy: a retrospective review. Altern Ther Health Med 5:42–47

    PubMed  CAS  Google Scholar 

  • Roller M, Clune Y, Collins K et al (2007) Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients. Br J Nutr 97(4):676–684

    Article  PubMed  CAS  Google Scholar 

  • Ruan Z, Yang Z, Wang Y et al (2009) DNA vaccine against tumor endothelial marker 8 inhibits tumor angiogenesis and growth. J Immunother 32(5):486–491

    Article  PubMed  CAS  Google Scholar 

  • Saltzman DA, Heise CP, Hasz DE et al (1996) Attenuated Salmonella typhimurium containing interleukin – 2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer Biother Radiopharm 11:145–153

    Article  PubMed  CAS  Google Scholar 

  • Saltzman DA, Katsanis E, Heise CP et al (1997) Patterns of hepatic and splenic colonization by an attenuated strain of Salmonella typhimurium containing the gene for human interleukin-2: a novel anti-tumor agent. Cancer Biother Radiopharm 12:37–45

    Article  PubMed  CAS  Google Scholar 

  • Sampson JH, Akabani G, Archer GE et al (2003) Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 65(1):27–35

    Article  PubMed  Google Scholar 

  • Sampson JH, Akabani G, Archer GE et al (2008) Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 10(3):320–329

    Article  PubMed  CAS  Google Scholar 

  • Seow SW, Cai S, Rahmat JN et al (2010) Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors. Cancer Sci 101(3):751–758

    Article  PubMed  CAS  Google Scholar 

  • Shimamura T, Husain SR, Puri RK (2006) The IL-4 and IL-13 Pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg Focus 20(4):E11

    Article  PubMed  Google Scholar 

  • Takimoto CH, Calvo E (2008) Principles of oncologic pharmacotherapy. In: Pazdur R, Wagman LD, Camphausen KA et al (eds) Cancer management: a multidisciplinary approach, 11th edn. Cmp United Business Media, New York

    Google Scholar 

  • Theys J, Landuyt W, Nuyts S et al (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther 8:294–297

    Article  PubMed  CAS  Google Scholar 

  • Thiele E, Arison R, Boxer G (1963) Oncolysis by Clostridia IV effect of nonpathogenic Clostridial spores in normal and pathological tissues. Cancer Res 24:234–238

    Google Scholar 

  • Tjuvajev J, Blasberg R, Luo X et al (2001) Salmonella based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET) for diagnostic imaging. J Control Release 74:313–315

    Article  PubMed  CAS  Google Scholar 

  • Turan T, Karacay O, Tulunay G et al (2006) Results with EMA/CO (etoposide, methotrexate, actinomycin D, cyclophosphamide, vincristine) chemotherapy in gestational trophoblastic neoplasia. Int J Gynecol Cancer 16(3):1432–1438

    Article  PubMed  CAS  Google Scholar 

  • Vogelbaum MA, Sampson JH, Kunwar S et al (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61(5):1031–1037

    Article  PubMed  Google Scholar 

  • Weber FW, Floeth F, Asher A et al (2003) Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. Acta Neurochir Suppl 88:93–103

    PubMed  CAS  Google Scholar 

  • Wei MQ, Ellem KAO, Dunn P et al (2007) Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur J Cancer 43:490–496

    Article  PubMed  Google Scholar 

  • Wood LM, Guirnalda PD, Seavey MM et al (2008) Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors. Immunol Res 42:233–245

    Article  PubMed  Google Scholar 

  • Xu J, Liu XS, Zhou SF et al (2009) Combination of immunotherapy with anaerobic bacteria for immunogene therapy of solid tumours. Genet Ther Mol Biol 13:36–52

    CAS  Google Scholar 

  • Yuhua L, Kunyuan G, Hui C et al (2001) Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int J Cancer 94:438–443

    Article  PubMed  CAS  Google Scholar 

  • Yuk JM, Shin DM, Song KS et al (2010) Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy. Autophagy 6(1):46–60

    Article  PubMed  CAS  Google Scholar 

  • Zacharski LR, Sukhatme VP (2005) Coley’s toxin revisited: immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 3:424

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Medhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Patyar, S., Prakash, A., Medhi, B. (2012). Bacteria as a Therapeutic Approach in Cancer Therapy. In: Khan, A. (eds) Bacteria and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2585-0_8

Download citation

Publish with us

Policies and ethics