Skip to main content

Analysis and Interpretation in the Philosophy of Modern Physics

  • 829 Accesses

Part of the The Western Ontario Series in Philosophy of Science book series (WONS,volume 78)

Abstract

William Demopoulos identified a particular kind of “conceptual analysis” as a central achievement of the analytic tradition in philosophy, with far-reaching implications for the philosophy of mathematics and the mathematical sciences. I present an overview of this notion of conceptual analysis, the part that it has played in the construction and interpretation of physical theory, and its implications for some general questions about the relation between formal theories and experience.

Keywords

  • Quantum Mechanic
  • Special Relativity
  • Conceptual Analysis
  • Conceptual Scheme
  • Constructive Theory

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-2582-9_1
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-2582-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   169.00
Price excludes VAT (USA)

Notes

  1. 1.

    See also Chapter 7, this volume.

  2. 2.

    See Helmholtz (1870) and Poincaré (1902, chapter 4); see also DiSalle (2006, chapter 3).

  3. 3.

    This is a brief outline of an argument that is elaborated at length in DiSalle (2006), Chapter 4, and DiSalle (2010).

  4. 4.

    See Bub (2005) and this volume, below, for a particularly illuminating discussion of Einstein’s distinction and its contemporary relevance.

  5. 5.

    Bub (2005) articulates the lessons that can be learned for the interpretation of quantum mechanics from Minkowski’s interpretation of relativity. For a contrary view, see Brown and Timpson (2006).

  6. 6.

    For a detailed and illuminating treatment of this subject, here only sketched, see Frappier (2004).

  7. 7.

    Flores (1999) clarifies many aspects of Einstein’s distinction by re-formulating it as the distinction between “framework” and “interaction” theories, a formulation that not only captures key aspects of relativity and quantum mechanics, but also their kinship with Newtonian mechanics as a theory of the same type.

  8. 8.

    See Brown (2005) and Brown and Timpson (2006). But see Hagar (2008) for a response to Brown.

  9. 9.

    The constructive interpretation of relativity is expressed in Brown (2005). For opposing views, see Norton (2008) and Janssen (2008).

  10. 10.

    See Bub and Pitowsky (2010) for a useful discussion of this problem.

  11. 11.

    See also Brown (2005), chapter 5.

  12. 12.

    See Chapter 12 , this volume, and Demopoulos (2011a).

  13. 13.

    See DiSalle (2002) for further discussion of the contrast between the view presented here and the views of the logical positivists.

  14. 14.

    For further discussion and context, see also Demopoulos and Friedman (1985).

References

  • Bell, J.S. 1993. How to teach special relativity. In Speakable and unspeakable in quantum mechanics, ed. J.S. Bell, 67–80. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brown, H. 2005. Physical relativity: Space-time structure from a dynamical perspective. Oxford: Oxford University Press.

    Google Scholar 

  • Brown, H., and C. Timpson. 2006. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics. In Physical theory and its interpretation: Essays in honour of Jeffrey Bub, eds. W. Demopoulos and I. Pitowsky, 29–42. Western Ontario series in the philosophy of science. New York: Springer.

    Google Scholar 

  • Bub, J. 2004. Why the quantum? Studies in the History and Philosophy of Modern Physics 35: 241–266.

    CrossRef  Google Scholar 

  • Bub, J. 2005. Quantum mechanics is about quantum information. Foundations of Physics 34: 541–560.

    CrossRef  Google Scholar 

  • Bub, J., and I. Pitowsky 2010. Two dogmas about quantum mechanics. In Many worlds? Everett, quantum theory, and reality, eds. S. Saunders, A. Kent, J. Barrett, and D. Wallace, 433–459. Oxford: Oxford University Press.

    Google Scholar 

  • Demopoulos, W. 1974. What is the logical interpretation of quantum mechanics? In PSA 1974: Proceedings of the biennial meeting of the philosophy of science association, 721–728. New York: Springer.

    Google Scholar 

  • Demopoulos, W. 1998. The philosophical basis of our knowledge of number. Noûs 32: 481–503.

    CrossRef  Google Scholar 

  • Demopoulos, W. 2000. On the origin and status of our conception of number. Notre Dame Journal of Formal Logic 41: 210–226.

    CrossRef  Google Scholar 

  • Demopoulos, W. 2003. On the rational reconstruction of our theoretical knowledge. British Journal for the Philosophy of Science 54: 371–403.

    CrossRef  Google Scholar 

  • Demopoulos, W. 2011a. Generalized probability measures and the framework of effects. The probable and the improbable: A memorial volume for Itamar Pitowsky, eds. Meir Hemmo and Yemima Ben-Menahem, Forthcoming. New York: Springer.

    Google Scholar 

  • Demopoulos, W. 2011b. Notes on van Fraassen (unpublished manuscript).

    Google Scholar 

  • Demopoulos, W., and Friedman, M. 1985. Bertrand Russell’s The Analysis of Matter: Its historical context and contemporary interest. Philosophy of Science 52: 621–639.

    CrossRef  Google Scholar 

  • DiSalle, R. 2002. Conventionalism and modern physics: a re-assessment. Noûs 36: 169–200.

    CrossRef  Google Scholar 

  • DiSalle, R. 2006. Understanding space-time: The philosophical development of physics from Newton to Einstein. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • DiSalle, R. 2010. Synthesis, the synthetic a priori, and the origins of modern space-time theory. In Discourse on a new method, eds. M. Dickson and M. Domski, 523–552. Chicago: Open Court Press.

    Google Scholar 

  • Einstein, A. 1905. Zur elektrodynamik bewegter Körper. Annalen der Physik 17: 891–921.

    CrossRef  Google Scholar 

  • Einstein, A. 1917. Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd edn. Braunschweig: Vieweg und Sohn.

    Google Scholar 

  • Einstein, A. 2002. Was ist Relativitäts-Theorie? In The collected papers of Albert Einstein, eds. M. Janssen, R. Shulmann, J. Illy, C. Lehner, and D. Buchwald, vol. 7, 206–211. Princeton: Princeton University Press.

    Google Scholar 

  • Einstein, A., H.A. Lorentz, H. Minkowski, and H. Weyl. 1952. The principle of relativity (trans: Perrett, W. and G.B. Jeffery). New York: Dover Books.

    Google Scholar 

  • Flores, F. 1999. Einstein’s theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science 13: 123–134.

    CrossRef  Google Scholar 

  • Frappier, M. 2004. Heisenberg ’s notion of interpretation. Ph.D. dissertation, University of Western Ontario.

    Google Scholar 

  • Hagar, A. 2008. Length matters: The Einstein–Swann correspondence and the constructive approach to the special theory of relativity. Studies in History and Philosophy of Modern Physics 39: 532–556.

    CrossRef  Google Scholar 

  • Heisenberg, W. 1927. Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik. Zeitschrift für Physik 43: 172–198.

    CrossRef  Google Scholar 

  • Helmholtz, H. 1870. Ueber den Ursprung und die Bedeutung der geometrischen Axiome. In Helmholtz’s Vorträge und Reden, vol. 2, 1–31. Braunschweig: Vieweg und Sohn, 1884.

    Google Scholar 

  • Janssen, M. 2008. Drawing the line between kinematics and dynamics in special relativity. Studies in History and Philosophy of Science Part B 40: 26–52.

    CrossRef  Google Scholar 

  • Janssen, M., R. Shulmann, J. Illy, C. Lehner, and D. Buchwald, eds. 2002. The collected papers of Albert Einstein, vol. 7. Princeton: Princeton University Press.

    Google Scholar 

  • Kuhn, T. 1970a. The structure of scientific revolutions, 2nd edn. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, T. 1970b. Logic of discovery or psychology of research? In Criticism and the growth of knowledge, eds. I. Lakatos and A. Musgrave, 1–24. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lorentz, H.A. 1952. Michelson’s interference experiment. In The principle of relativity, eds. A. Einstein, H.A. Lorentz, H. Minkowski, and H. Weyl, 3–7. New York: Dover Books.

    Google Scholar 

  • Minkowski, H. 1908. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Mathematische Annalen 68: 472–525.

    CrossRef  Google Scholar 

  • Minkowski, H. 1909. Raum und Zeit. Physikalische Zeitschrift 10: 104–111.

    Google Scholar 

  • Norton, J. 2008. Why constructive relativity fails. British Journal for the Philosophy of Science 59: 821–834.

    CrossRef  Google Scholar 

  • Pitowsky, I. 2006. Quantum Mechanics as a Theory of Probability. In Physical theory and its interpretation: Essays in honor of Jeffrey Bub, eds. W. Demopoulos and I. Pitowsky, 213–240. The Western Ontario Series in Philosophy of Science, vol. 72. New York: Springer.

    Google Scholar 

  • Poincaré, H. 1902. La Science et L’Hypothèse. Paris: Flammarion.

    Google Scholar 

  • Poincaré, H. 1905. Sur la dynamique de l’électron. Comptes Rendus de l’Acadèmie des Sciences 140: 1504–1508.

    Google Scholar 

  • Reichenbach, H. 1949. The philosophical significance of relativity. In Albert Einstein, philosopher-scientist, ed. P.A. Schilpp, 289–311. Chicago: Open Court.

    Google Scholar 

  • van Fraassen, B. 1980. The Scientific Image. Oxford: Oxford University Press.

    CrossRef  Google Scholar 

  • van Fraassen, B. 2008. Scientific Representation: Paradoxes of Perspective. Oxford: Oxford University Press.

    Google Scholar 

  • Wright, C. 1997. On the philosophical significance of Frege’s Theorem. In Language, thought, and logic. Essays in honour of Michael Dummett, ed. R.G. Heck, 201–233. New York: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

I would like to thank my co-editors, Mélanie Frappier and Derek H. Brown, for their tireless work on this volume, taking on rather more than the lion’s share of the editorial tasks, and thereby making it possible for me to complete this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert DiSalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

DiSalle, R. (2012). Analysis and Interpretation in the Philosophy of Modern Physics. In: Frappier, M., Brown, D., DiSalle, R. (eds) Analysis and Interpretation in the Exact Sciences. The Western Ontario Series in Philosophy of Science, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2582-9_1

Download citation