Advertisement

Analysis and Interpretation in the Philosophy of Modern Physics

  • Robert DiSalle
Chapter
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 78)

Abstract

William Demopoulos identified a particular kind of “conceptual analysis” as a central achievement of the analytic tradition in philosophy, with far-reaching implications for the philosophy of mathematics and the mathematical sciences. I present an overview of this notion of conceptual analysis, the part that it has played in the construction and interpretation of physical theory, and its implications for some general questions about the relation between formal theories and experience.

Keywords

Quantum Mechanic Special Relativity Conceptual Analysis Conceptual Scheme Constructive Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank my co-editors, Mélanie Frappier and Derek H. Brown, for their tireless work on this volume, taking on rather more than the lion’s share of the editorial tasks, and thereby making it possible for me to complete this paper.

References

  1. Bell, J.S. 1993. How to teach special relativity. In Speakable and unspeakable in quantum mechanics, ed. J.S. Bell, 67–80. Cambridge: Cambridge University Press.Google Scholar
  2. Brown, H. 2005. Physical relativity: Space-time structure from a dynamical perspective. Oxford: Oxford University Press.Google Scholar
  3. Brown, H., and C. Timpson. 2006. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics. In Physical theory and its interpretation: Essays in honour of Jeffrey Bub, eds. W. Demopoulos and I. Pitowsky, 29–42. Western Ontario series in the philosophy of science. New York: Springer.Google Scholar
  4. Bub, J. 2004. Why the quantum? Studies in the History and Philosophy of Modern Physics 35: 241–266.CrossRefGoogle Scholar
  5. Bub, J. 2005. Quantum mechanics is about quantum information. Foundations of Physics 34: 541–560.CrossRefGoogle Scholar
  6. Bub, J., and I. Pitowsky 2010. Two dogmas about quantum mechanics. In Many worlds? Everett, quantum theory, and reality, eds. S. Saunders, A. Kent, J. Barrett, and D. Wallace, 433–459. Oxford: Oxford University Press.Google Scholar
  7. Demopoulos, W. 1974. What is the logical interpretation of quantum mechanics? In PSA 1974: Proceedings of the biennial meeting of the philosophy of science association, 721–728. New York: Springer.Google Scholar
  8. Demopoulos, W. 1998. The philosophical basis of our knowledge of number. Noûs 32: 481–503.CrossRefGoogle Scholar
  9. Demopoulos, W. 2000. On the origin and status of our conception of number. Notre Dame Journal of Formal Logic 41: 210–226.CrossRefGoogle Scholar
  10. Demopoulos, W. 2003. On the rational reconstruction of our theoretical knowledge. British Journal for the Philosophy of Science 54: 371–403.CrossRefGoogle Scholar
  11. Demopoulos, W. 2011a. Generalized probability measures and the framework of effects. The probable and the improbable: A memorial volume for Itamar Pitowsky, eds. Meir Hemmo and Yemima Ben-Menahem, Forthcoming. New York: Springer.Google Scholar
  12. Demopoulos, W. 2011b. Notes on van Fraassen (unpublished manuscript).Google Scholar
  13. Demopoulos, W., and Friedman, M. 1985. Bertrand Russell’s The Analysis of Matter: Its historical context and contemporary interest. Philosophy of Science 52: 621–639.CrossRefGoogle Scholar
  14. DiSalle, R. 2002. Conventionalism and modern physics: a re-assessment. Noûs 36: 169–200.CrossRefGoogle Scholar
  15. DiSalle, R. 2006. Understanding space-time: The philosophical development of physics from Newton to Einstein. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. DiSalle, R. 2010. Synthesis, the synthetic a priori, and the origins of modern space-time theory. In Discourse on a new method, eds. M. Dickson and M. Domski, 523–552. Chicago: Open Court Press.Google Scholar
  17. Einstein, A. 1905. Zur elektrodynamik bewegter Körper. Annalen der Physik 17: 891–921.CrossRefGoogle Scholar
  18. Einstein, A. 1917. Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd edn. Braunschweig: Vieweg und Sohn.Google Scholar
  19. Einstein, A. 2002. Was ist Relativitäts-Theorie? In The collected papers of Albert Einstein, eds. M. Janssen, R. Shulmann, J. Illy, C. Lehner, and D. Buchwald, vol. 7, 206–211. Princeton: Princeton University Press.Google Scholar
  20. Einstein, A., H.A. Lorentz, H. Minkowski, and H. Weyl. 1952. The principle of relativity (trans: Perrett, W. and G.B. Jeffery). New York: Dover Books.Google Scholar
  21. Flores, F. 1999. Einstein’s theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science 13: 123–134.CrossRefGoogle Scholar
  22. Frappier, M. 2004. Heisenberg ’s notion of interpretation. Ph.D. dissertation, University of Western Ontario.Google Scholar
  23. Hagar, A. 2008. Length matters: The Einstein–Swann correspondence and the constructive approach to the special theory of relativity. Studies in History and Philosophy of Modern Physics 39: 532–556.CrossRefGoogle Scholar
  24. Heisenberg, W. 1927. Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik. Zeitschrift für Physik 43: 172–198.CrossRefGoogle Scholar
  25. Helmholtz, H. 1870. Ueber den Ursprung und die Bedeutung der geometrischen Axiome. In Helmholtz’s Vorträge und Reden, vol. 2, 1–31. Braunschweig: Vieweg und Sohn, 1884.Google Scholar
  26. Janssen, M. 2008. Drawing the line between kinematics and dynamics in special relativity. Studies in History and Philosophy of Science Part B 40: 26–52.CrossRefGoogle Scholar
  27. Janssen, M., R. Shulmann, J. Illy, C. Lehner, and D. Buchwald, eds. 2002. The collected papers of Albert Einstein, vol. 7. Princeton: Princeton University Press.Google Scholar
  28. Kuhn, T. 1970a. The structure of scientific revolutions, 2nd edn. Chicago: University of Chicago Press.Google Scholar
  29. Kuhn, T. 1970b. Logic of discovery or psychology of research? In Criticism and the growth of knowledge, eds. I. Lakatos and A. Musgrave, 1–24. Cambridge: Cambridge University Press.Google Scholar
  30. Lorentz, H.A. 1952. Michelson’s interference experiment. In The principle of relativity, eds. A. Einstein, H.A. Lorentz, H. Minkowski, and H. Weyl, 3–7. New York: Dover Books.Google Scholar
  31. Minkowski, H. 1908. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Mathematische Annalen 68: 472–525.CrossRefGoogle Scholar
  32. Minkowski, H. 1909. Raum und Zeit. Physikalische Zeitschrift 10: 104–111.Google Scholar
  33. Norton, J. 2008. Why constructive relativity fails. British Journal for the Philosophy of Science 59: 821–834.CrossRefGoogle Scholar
  34. Pitowsky, I. 2006. Quantum Mechanics as a Theory of Probability. In Physical theory and its interpretation: Essays in honor of Jeffrey Bub, eds. W. Demopoulos and I. Pitowsky, 213–240. The Western Ontario Series in Philosophy of Science, vol. 72. New York: Springer.Google Scholar
  35. Poincaré, H. 1902. La Science et L’Hypothèse. Paris: Flammarion.Google Scholar
  36. Poincaré, H. 1905. Sur la dynamique de l’électron. Comptes Rendus de l’Acadèmie des Sciences 140: 1504–1508.Google Scholar
  37. Reichenbach, H. 1949. The philosophical significance of relativity. In Albert Einstein, philosopher-scientist, ed. P.A. Schilpp, 289–311. Chicago: Open Court.Google Scholar
  38. van Fraassen, B. 1980. The Scientific Image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  39. van Fraassen, B. 2008. Scientific Representation: Paradoxes of Perspective. Oxford: Oxford University Press.Google Scholar
  40. Wright, C. 1997. On the philosophical significance of Frege’s Theorem. In Language, thought, and logic. Essays in honour of Michael Dummett, ed. R.G. Heck, 201–233. New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Western OntarioLondonCanada

Personalised recommendations