Skip to main content

A Multiple-Scattering Approach to Electron Collisions with Small Molecular Clusters

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Abstract

We present a method based on multiple-scattering to determine elastic cross sections for electron collisions with molecular clusters. The method is based on the calculation of accurate collisional information for the molecules constituting the cluster that is then combined to obtain a cross section for interaction with the whole system. The method provides a computationally cost-effective way of treating low energy electron scattering from (homogeneous and heterogeneous) molecular clusters and aggregates. Results for (H2O) n (n = 2,5) and (HCOOH)2 are presented; the cross sections agree well with more accurate ab initio data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    0 has the same dimensions.

  2. 2.

    Those for l > l c are set to zero.

  3. 3.

    A quick inspection of the MS equations shows that as n increases, it is only the the size of the matrices to be multiplied that increases approximately as n 2. In an ab initio calculation, the number of integrals to be calculated, for example, grows much faster.

References

  1. R.L. Johnston, Atomic and Molecular Clusters (CRC Press, London, 2002)

    Book  Google Scholar 

  2. R.G. Harrison, K.S. Carslaw, Rev. Geophys. 41, 2 (2003)

    Article  Google Scholar 

  3. K.L. Aplin, R.A. McPheat, J. Atmos. Sol-Terr. Phy. 67, 775 (2005)

    Article  ADS  Google Scholar 

  4. M.T. Sykes, M. Levitt, Proc. Natl. Acad. Sci. U. S. A. 104, 12336 (2007)

    Article  ADS  Google Scholar 

  5. H. Hotop, M. Ruf, M. Allan, I. Fabrikant, Adv. At. Mol. Phys. 49, 85 (2003)

    Google Scholar 

  6. F.A. Gianturco, R.R. Lucchese, J. Langer, I. Martin, M. Stano, G. Karwasz, E. Illenberger, Eur. Phys. J. D 35, 417 (2005)

    Article  ADS  Google Scholar 

  7. T.C. Freitas, M.A.P. Lima, S. Canuto, M.H.F. Bettega, Phys. Rev. A 80, 062710 (2009)

    Article  ADS  Google Scholar 

  8. D. Bouchiha, L.G. Caron, J.D. Gorfinkiel, L. Sanche, J. Phys. B 41, 045204 (2008)

    Article  ADS  Google Scholar 

  9. I. Fabrikant, J. Phys. B-At. Mol. Opt. Phys. 38, 1745 (2005)

    Article  ADS  Google Scholar 

  10. S. Caprasecca, J.D. Gorfinkiel, D. Bouchiha, L.G. Caron, J. Phys. B 42, 095205 (2009)

    Article  ADS  Google Scholar 

  11. L. Caron, L. Sanche, Phys. Rev. A 73, 062707 (2006)

    Article  ADS  Google Scholar 

  12. D. Dill, J.L. Dehmer, J. Chem. Phys. 61, 692 (1974)

    Article  ADS  Google Scholar 

  13. M. Danos, L.C. Maximon, J. Math. Phys. 6, 766 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Messiah, Quantum Mechanics (Wiley, New York, 1962)

    MATH  Google Scholar 

  15. L. Caron, D. Bouchiha, J.D. Gorfinkiel, L. Sanche, Phys. Rev. A 76, 032716 (2007)

    Article  ADS  Google Scholar 

  16. L. Caron, L. Sanche, S. Tonzani, C.H. Greene, Phys. Rev. A 78, 042710 (2008)

    Article  ADS  Google Scholar 

  17. J. Tennyson, Phys. Rep. 491, 29 (2010)

    Article  ADS  Google Scholar 

  18. D.A. Case, Ann. Rev. Phys. Chem. 33, 151 (1982)

    Article  ADS  Google Scholar 

  19. P. Andreo, D.T. Burns, K. Hohlfeld, M.S. Huq, T. Kanai, F. Laitano, V. Smyth, S. Vynckier, Technical Report Series 398, IAEA International Atomic Energy Agency (2000)

    Google Scholar 

  20. M. Knapp, O. Echt, D. Kreisle, E. Recknagel, J. Chem. Phys. 85, 636 (1986)

    Article  ADS  Google Scholar 

  21. M. Knapp, O. Echt, D. Kreisle, E. Recknagel, J. Phys. Chem. 91, 2601 (1987)

    Article  Google Scholar 

  22. J. Weber, E. Leber, M.W. Ruf, H. Hotop, Eur. Phys. J. D 7, 587 (1999)

    Article  ADS  Google Scholar 

  23. X. Huang, B.J. Braams, J.M. Bowman, J. Phys. Chem. 110, 445 (2006)

    Article  Google Scholar 

  24. G.S. Tschumper, M.L. Leininger, B.C. Hoffman, E.F. Valeev, H.F. Schaefer, M. Quack, J. Chem. Phys. 116, 690 (2002)

    Article  ADS  Google Scholar 

  25. M. Schütz, W. Klopper, H. Lüthi, S. Leutwyler, J. Chem. Phys. 103, 6114 (1995)

    Article  ADS  Google Scholar 

  26. S.S. Xantheas, T.H. Dunning, Jr, J. Chem. Phys. 99, 8774 (1993)

    Article  ADS  Google Scholar 

  27. W. Klopper, M. Schütz, H.P. Lüthi, S. Leutwyler, J. Chem. Phys. 103, 1085 (1995)

    Article  ADS  Google Scholar 

  28. F. Madeja, M.M. Havenith, J. Chem. Phys. 117, 7162 (2002)

    Article  ADS  Google Scholar 

  29. J. Chocholousova, J. Vacek, P. Hobza, Phys. Chem. Chem. Phys. 4, 2119 (2002)

    Article  Google Scholar 

  30. M. Allan, Phys. Rev. Lett. 98, 123201 (2007)

    Article  ADS  Google Scholar 

  31. T. Sedlacko, R. Balog, A. Lafosse, M. Stano, S. Matejcik, R. Azria, E. Illenberger, Phys. Chem. Chem. Phys. 7, 1277 (2005)

    Article  Google Scholar 

  32. I. Martin, T. Skalicky, J. Langer, H. Abdoul-Carime, G. Karwasz, E. Illenberger, M. Stano, S. Matejcik, Phys. Chem. Chem. Phys. 7, 2212 (2005)

    Article  Google Scholar 

  33. NIST Computational Chemistry Comparison and Benchmark DataBase (2010). http://cccbdb.nist.gov/. National Institute of Standards and Technology — USA

  34. S. Caprasecca, J.D. Gorfinkiel, (2011). To be submitted

    Google Scholar 

  35. M. Allan, J. Phys. B 39, 2939 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work on the multiple-scattering treatment of electron collisions with small molecular cluster was initiated in collaboration with L Caron, D Bouchiha and L Sanche. We are indebted to them for their contributions to the development and testing of this technique and for their encouragement. This work was supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena D. Gorfinkiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gorfinkiel, J.D., Caprasecca, S. (2012). A Multiple-Scattering Approach to Electron Collisions with Small Molecular Clusters. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics