Advertisement

Chromosome Aberrations by Heavy Ions

  • Francesca Ballarini
  • Andrea Ottolenghi
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts’ exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

Keywords

Chromosome Aberration International Space Station Complex Exchange Relative Biological Effectiveness Chromosome Territory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by EU (“RISC-RAD” project, Contract no. FI6R-CT-2003-508842, and “NOTE” project, Contract no. FI6R-036465) and ASI (Italian Space Agency, “Mo-Ma/COUNT” project).

References

  1. 1.
    Savage J, Simpson P, Mutat Res 312, 51–60 (1994)Google Scholar
  2. 2.
    Durante M, Furusawa Y, Gotoh E, Int J Radiat Biol 74, 457–462 (1998)CrossRefGoogle Scholar
  3. 3.
    Pinkel D, Straume T, Gray J., Proc Natl Acad Sci USA 83, 2934–2938 (1986)CrossRefADSGoogle Scholar
  4. 4.
    Cornforth M, Radiat Res 155, 643–659 (2001)CrossRefGoogle Scholar
  5. 5.
    Anderson R, Stevens D, Goodhead D, Proc Natl Acad Sci USA 99, 12167–12172 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Mitelman F, Mutat Res 462, 247–253 (2000)CrossRefGoogle Scholar
  7. 7.
    de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A, Cell 66, 675–684 (1991)CrossRefGoogle Scholar
  8. 8.
    Faretta MR, Di Croce L, Pelicci PG, Seminars in Hematology 38, 42–53 (2001)CrossRefGoogle Scholar
  9. 9.
    Bonassi S, Hagmar L, Stromberg U, Huici Montagud A, Tinnerberg H, Forni A, Heikkila P, Wanders S, Norppa H, for the European Study Group on Cytogenetic Biomarkers and Health (ESCH), Cancer Res 60, 1619–1625 (2000)Google Scholar
  10. 10.
    Durante M, Radiat Res 164, 467–473 (2005)CrossRefGoogle Scholar
  11. 11.
    Bauchinger M, Schmid E, Braselmann H, Int J Radiat Biol 77, 553–557 (2001)CrossRefGoogle Scholar
  12. 12.
    Sakamoto-Hojo E, Natarajan AT, Curado MP, Radiat Prot Dosim 86, 25–32 (1999)Google Scholar
  13. 13.
    Kanda R, Minamihisamatsu M, Hayata I, Int J Radiat Biol 78, 857–862 (2002)CrossRefGoogle Scholar
  14. 14.
    Hsieh W, Lucas JN, Hwang JJ, Chan CC, Chang WP, Int J Radiat Biol 77, 797–804 (2001)CrossRefGoogle Scholar
  15. 15.
    Lindholm C, Tekkel M, Veidebaum T et al, Int J Radiat Biol 74, 565–571 (1998)CrossRefGoogle Scholar
  16. 16.
    Lloyd D, Moquet JE, Oram S, Edwards AA, Lucas JN, Int J Radiat Biol 73, 543–547 (1998)CrossRefGoogle Scholar
  17. 17.
    Johnson K, Nath J et al., Mutat Res 439, 77–85 (1999)Google Scholar
  18. 18.
    Snigiryova G, Braselmann H, Salassidis K et al, Int J Radiat Biol 71, 119–127 (1997)CrossRefGoogle Scholar
  19. 19.
    Stephan G, Pressl S, Int J Radiat Biol 71, 293–299 (1997)CrossRefGoogle Scholar
  20. 20.
    Stram D, Sposto R et al, Radiat Res 136, 29–36 (1993)CrossRefGoogle Scholar
  21. 21.
    Nakano M, Kodama Y et al, Int J Radiat Biol 77, 971–977 (2001)CrossRefGoogle Scholar
  22. 22.
    George K, Durante M, Wu H, Willingham V, Badhwar G, Cucinotta F, Radiat Res 156, 731–738 (2001)CrossRefGoogle Scholar
  23. 23.
    Yang T, George K, Johnson AS, Durante M, Fedorenko BS, Biodosimetry results from space flight MIR-18 Radiat Res 148, S17–S23 (1997)Google Scholar
  24. 24.
    Obe G, Johannes I, Johannes C, Hallman K, Reiz G, Facius R, Int J Radiat Biol 72, 727–734 (1997)CrossRefGoogle Scholar
  25. 25.
    Testard I, Ricoul M, Hoffschir F, Flury-Herard A, Dutrillaux B, Fedorenko B, Gerasimenko V, Sabatier L, Int J Radiat Biol 70, 403–411 (1996)CrossRefGoogle Scholar
  26. 26.
    Fedorenko B, Druzhinin S, Yudaeva L et al., Adv Space Res 27, 355–359 (2001)CrossRefADSGoogle Scholar
  27. 27.
    Amaldi U, Kraft G, J Radiat Res 48S, A27–A41 (2007)CrossRefGoogle Scholar
  28. 28.
    Edwards A, Radiat Res 148, 39–44 (1997)CrossRefGoogle Scholar
  29. 29.
    Kolb H, Bone marrow morbidity of radiotherapy. In: Plowman P, McElwain T, Meadows A (eds) Complications of cancer management, Oxford, pp 398–410 (1991)Google Scholar
  30. 30.
    Durante M, La Rivista del Nuovo Cimento 19(12),1–44 (1996)Google Scholar
  31. 31.
    Durante M, Furusawa Y, George K, Gialanella G, Greco O, Grossi G, Matsufuji N, Pugliese M, Yang T, Radiat Res 149, 446–454 (1998)CrossRefGoogle Scholar
  32. 32.
    Kawata T, Durante M, Furusawa Y, George K, Takai N, Wu H, Cucinotta F, Int J Radiat Biol 77, 165–174 (2001)CrossRefGoogle Scholar
  33. 33.
    Ohara H, Okazaki N, Monobe M, Watanabe S, Kanayama M, Minamihisamastu M, Adv Space Res 22, 1673–1682 (1998)CrossRefADSGoogle Scholar
  34. 34.
    Testard I, Dutrillaux B, Sabatier L, Int J Radiat Biol 72, 423–433 (1997)CrossRefGoogle Scholar
  35. 35.
    George K, Wu H, Willingham V, Furusawa Y, Kawata T, Cucinotta F, Int J Radiat Biol 77, 175–183 (2001)CrossRefGoogle Scholar
  36. 36.
    Durante M, George K, Yang T, Radiat Res 148, S45–S50 (1997)CrossRefGoogle Scholar
  37. 37.
    Durante M, Furusawa Y, Majima H, Kawata T, Gotoh E, Radiat Res 151, 670–676 (1999)CrossRefGoogle Scholar
  38. 38.
    Wu H, Durante M, George K, Yang T, Radiat Res 148, S102–S107 (1997)CrossRefGoogle Scholar
  39. 39.
    Durante M, George K, Wu H, Cucinotta F, Radiat Res 158, 581–590 (2002)CrossRefGoogle Scholar
  40. 40.
    George K, Durante M, Willingham V, Wu H, Yang T, Cucinotta FA, Radiat Res 160, 425–435 (2003)CrossRefGoogle Scholar
  41. 41.
    Durante M, Yamada S, Ando K et al., Int J Radiat Oncol Biol Phys 47, 793–798 (2000)CrossRefGoogle Scholar
  42. 42.
    Rabbits T, Nature 372, 143–149 (1994)CrossRefADSGoogle Scholar
  43. 43.
    Durante M, Snigiryova G, Akaeva E et al., Cytogenet Genome Res 103, 40–46 (2003)CrossRefGoogle Scholar
  44. 44.
    Badhwar G, Atwell W, Reitz G, Beaujean R, Heinrich W, Radiat Meas 35, 393–422 (2002)CrossRefGoogle Scholar
  45. 45.
    Chadwick K, Leenhouts H, Int J Radiat Biol 33, 517–529 (1978)CrossRefGoogle Scholar
  46. 46.
    Lea DE, Actions of radiations on living cells. Cambridge University Press, Cambridge, UK (1946)Google Scholar
  47. 47.
    Savage J,, Mutat Res 404, 139–147 (1998)CrossRefGoogle Scholar
  48. 48.
    Ottolenghi A, Ballarini F, Merzagora M, Radiat Environ Biophys 38, 1–13 (1999)CrossRefGoogle Scholar
  49. 49.
    Edwards A, Int J Radiat Biol 78, 551–558 (2002)CrossRefGoogle Scholar
  50. 50.
    Hlatky L, Sachs R, Vazquez M, Cornforth M, Bioessays 24, 714–723 (2002)CrossRefGoogle Scholar
  51. 51.
    Holley W, Mian IS, Park S, Rydberg B, Chatterjee A, Radiat Res 158, 568–580 (2002)CrossRefGoogle Scholar
  52. 52.
    Ballarini F, Merzagora M, Monforti F, Durante M, Gialanella G, Grossi G, Pugliese M, Ottolenghi A, Int J Radiat Biol 75, 35–46 (1999)CrossRefGoogle Scholar
  53. 53.
    Ballarini F, Ottolenghi A, Adv Space Res 31, 1557–1568 (2003)CrossRefADSGoogle Scholar
  54. 54.
    Ballarini F, Ottolenghi A, Radiat Environ Biophys 43 (2004)Google Scholar
  55. 55.
    Ballarini F, Ottolenghi A, Radiat Res 164, 567–70 (2005)CrossRefGoogle Scholar
  56. 56.
    Ballarini F, Biaggi M, Ottolenghi A, Radiat Prot Dosim 99, 175–182 (2002)Google Scholar
  57. 57.
    Ballarini F, Battistoni G, Cerutti F et al., Physics to understand biology: Monte Carlo approaches to investigate space radiation doses and their effects on DNA and chromosomes. In: Gadioli E (ed) Proc of the 11th International conference on nuclear reaction mechanisms, Varenna, Italy, June 12–16, 2006. Ricerca Scientifica ed Educazione Permanente suppl 126, pp 591–600 (2006)Google Scholar
  58. 58.
    Ballarini F, Alloni D, Facoetti A, Mairani A, Nano R, Ottolenghi A, Adv Space Res 40, 1392–1400 (2007)CrossRefADSGoogle Scholar
  59. 59.
    F. Ballarini, M.V. Garzelli, G. Givone, A. Mairani, A. Ottolenghi, D. Scannicchio, S. Trovati, A. Zanini (2008), Proc Int Conf on Nuclear Data for Science and Technology 2007, Nice, France, April 2007, vol. 2,  pp 1337–1341 (pdf available at http://nd2007.edpsciences.org)
  60. 60.
    Belli M, Goodhead D, Ianzini F, Simone G, Tabocchini MA, Int J Radiat Biol 61, 625–629 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Nuclear and Theoretical Physics, and INFN (National Institute of Nuclear Physics)University of PaviaPaviaItaly

Personalised recommendations