Skip to main content

Monte Carlo Methods to Model Radiation Interactions and Induced Damage

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This review is devoted to the analysis of some Monte Carlo (MC) simulation programmes which have been developed to describe radiation interaction with biologically relevant materials. Current versions of the MC codes Geant4 (GEometry ANd Tracking 4), PENELOPE (PENetration and Energy Loss of Positrons and Electrons), EPOTRAN (Electron and POsitron TRANsport), and LEPTS (Low-Energy Particle Track Simulation) are described. Mean features of each model, as the type of radiation to consider, the energy range covered by primary and secondary particles, the type of interactions included in the simulation and the considered target geometries are discussed. Special emphasis lies on recent developments that, together with (still emerging) new databases that include adequate data for biologically relevant materials, bring us continuously closer to a realistic, physically meaningful description of radiation damage in biological tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.R. Wilson Phys. Rev. 86, 261–269 (1952)

    Article  Google Scholar 

  2. J.C. Butcher, H. Messel, Phys Rev 112, 2096–2106 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.C. Butcher, H. Messel Electron number distribution in electron-photon showers in air and aluminium absorbers. Nucl Phys 20, 15–128, (1960)

    MATH  Google Scholar 

  4. A.A. Varfolomeev, I.A. Svetlolobov, Sov Phys JETP 36, 1263–1270 (1959)

    Google Scholar 

  5. C.D. Zerby, H.S. Moran, A Monte Carlo calculation of the three-dimensional development of high-energy electron-photon cascade showers. Report ORNL-TM-422, Oak Ridge Natinoal Laboratory (Oak Ridge, Tennessee, 1962)

    Google Scholar 

  6. C.D. Zerby, H.S. Moran, J Appl Phys 34, 2445–2457 (1963)

    Article  ADS  Google Scholar 

  7. H.H. Nagel, Die Berechnung von Elektron-Photon-Kaskaden in Blei mit Hilfe der Monte-Carlo Methode. Dissertation (Rheinische Friedrich-Wilhelms-Universität, 1964)

    Google Scholar 

  8. H.H. Nagel, Z Phys 186, 319–346 (1965)

    Article  ADS  Google Scholar 

  9. M.J. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: B. Alder, S. Fernbach, M. Rotenberg (ed) Methods in Computational Physics, vol 1 (Academic, New York, 1963)

    Google Scholar 

  10. I. Kawrakow, M. Fippel, Phys Med Biol 45, 2163 (2000)

    Article  Google Scholar 

  11. I. Kawrakow, E. Mainegra-Hing, D.W.O. Rogers, F. Tessier, B.R.B. Walters, The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Technical report PIRS-701, National Research Council of Canada (Ottawa, 2000)

    Google Scholar 

  12. M.J. Berger, S.M. Seltzer, Phys Rev C 2, 621–631 (1970)

    Article  ADS  Google Scholar 

  13. M.J. Berger, S.M. Seltzer, ETRAN Monte Carlo code system for electron and photon transport through extended media. RSIC Report CCC-107, Oak Ridge National Laboratory (Oak Ridge, 1973)

    Google Scholar 

  14. J. Baró, J. Sempau, J.M. Fernández-Varea, F. Salvat, Nucl Instrum Meth Phys Res B 100, 31–46 (1995)

    Article  ADS  Google Scholar 

  15. F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE. A code system for Monte Carlo simulation of electron and photon transport. OECD-Nuclear Energy Agency (2003)

    Google Scholar 

  16. A. Muñoz, J.M. Pérez, G. García, F. Blanco, Nucl Instrum Meth A 536, 176–188 (2005)

    Article  ADS  Google Scholar 

  17. M.C. Fuss, A. Muñoz, J.C. Oller, F. Blanco, M.-J. Hubin-Franskin, D. Almeida, P. Limão-Vieira, G. García, Chem Phys Lett 486, 110–115 (2010)

    Article  ADS  Google Scholar 

  18. S. Agostinelli et al., Nucl. Instrum. Meth. Phys. Res. A, 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  19. A.F. Bielajew, H. Hirayama, W.R. Nelson, D.W.O. Rogers, History, overview and recent improvements of EGS4. Report SLAC-PUB-6499, Stanford Linear Accelerator Centre (1994)

    Google Scholar 

  20. I. Kawrakow, Med Phys 27, 485–498 (2000)

    Article  Google Scholar 

  21. J.A. Halbleib, T.A. Melhorn, ITS: The integrated TIGER series of coupled electron/photon Monte Carlo transport codes. Report SAND84–0573, Sandia National Laboratory (Albuquerque, 1984)

    Google Scholar 

  22. F.B. Brown, MCNP — A general Monte Carlo-particle transport code, version 5. Report LA-UR-03, Los Alamos National Laboratory (Los Alamos, 2003)

    Google Scholar 

  23. W. Friedland, P. Jacob, P. Kundrát, Radiat. Res. 173, 677–688 (2010)

    Article  Google Scholar 

  24. C. Champion, C. Le Loirec, B. Stosic, Int. J. Radiat. Biol. (2011), doi: 10.3109/ 09553002.2011.641451

    Google Scholar 

  25. Muñoz A, Blanco F, Oller JC, Pérez JM, García G (2007) Adv Quant Chem 52, 21–57

    Article  Google Scholar 

  26. J. Allison et al., IEEE Transactions on Nucl. Sci. 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

  27. J. Apostolakis et al., Radiat. Phys. Chem. 78(10), 859–873 (2009)

    Article  ADS  Google Scholar 

  28. S. Incerti, H, Seznec, M. Simon, P. Barberet, C. Habchi, P. Moretto, Radiat. Prot. Dosim. 133(1), 2–11 (2009)

    Google Scholar 

  29. A. Le Postollec, S. Incerti, M. Dobrijévic, L. Desorgher, G. Santin, P. Moretto, O. Vandenabeele-Trambouze, G. Coussot, L. Dartnell, P. Nieminen, Astrobiol. 9(3), 311–323 (2009)

    Article  ADS  Google Scholar 

  30. S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, P. Guèye, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, C. Villagrasa, C. Zacharatou, Int. J. Model. Simul. Sci. Comput. 01(02), 157 (2010)

    Article  Google Scholar 

  31. Z. Francis, S. Incerti, R. Capra, B. Mascialino, G. Montarou, V. Stepan, C. Villagrasa, Appl. Radiat. Isot. 69(1), 220–226 (2011)

    Article  Google Scholar 

  32. S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H.N. Tran, B. Mascialino, C. Champion, V.N. Ivanchenko, M.A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Guèye, R. Capra, P. Nieminen, C. Zacharatou, Med. Phys. 37(9), 4692 (2010)

    Article  Google Scholar 

  33. Z. Francis, C. Villagrasa, I. Clairand, Comput. Meth. Progr. Biomed. 101(3), 265–270 (2011)

    Article  Google Scholar 

  34. H. Nikjoo, S. Uehara, D. Emfietzoglou, F.A. Cucinotta, Radiat. Measurem. 41(9–10), 1052–1074 (2006)

    Article  Google Scholar 

  35. J. Sempau, E. Acosta, J. Baró, J.M. Fernández-Varea, F. Salvat, Nucl Instrum Meth Phys Res B 132, 377–390 (1997)

    Article  ADS  Google Scholar 

  36. F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE-2008: A Code System for Monte Carlo Simulation of Electronand Photon Transport (Issy-les-Moulineaux, France: OECD/NEA Data Bank 2009). http://www.oecd-nea.org/science/pubs/2009/nea6416-penelope.pdf

  37. J. Sempau, J.M. Fernández-Varea, E. Acosta, F. Salvat, Nucl. Instrum. Meth. B 207, 107–123 (2003)

    Article  ADS  Google Scholar 

  38. F. Salvat, J.M. Fernández-Varea, Metrologia 46, S112–S138 (2009)

    Article  ADS  Google Scholar 

  39. F. Salvat, A. Jablonski, C.J. Powell, Comput. Phys. Commun. 165, 157–190 (2005)

    Article  ADS  Google Scholar 

  40. ICRU Report 77, Elastic Scattering of Electrons and Positrons (ICRU, Bethesda, MD, 2007)

    Google Scholar 

  41. D. Liljequist, J. Phys. D: Appl. Phys. 16, 1567–1582 (1983)

    Article  ADS  Google Scholar 

  42. R.M. Sternheimer, Phys. Rev. 88, 851–859 (1952)

    Article  ADS  Google Scholar 

  43. ICRU Report 37, Stopping Powers for Electrons and Positrons, (ICRU, Bethesda, MD, 1984)

    Google Scholar 

  44. D. Bote, F. Salvat, Phys. Rev. A 77, 042701 (2008)

    Article  ADS  Google Scholar 

  45. S.M. Seltzer, M.J. Berger, Nucl. Instrum. Meth. B 12, 95–134 (1985)

    Article  ADS  Google Scholar 

  46. S.M. Seltzer, M.J. Berger, At. Data Nucl. Data Tables 35, 345–418 (1986)

    Article  ADS  Google Scholar 

  47. E. Acosta, X. Llovet, F. Salvat, Appl. Phys. Lett. 80, 3228–230 (2002)

    Article  ADS  Google Scholar 

  48. L. Kissel, C.A. Quarles, R.H. Pratt, At. Data Nucl. Data Tables 28, 381–460 (1983)

    Article  ADS  Google Scholar 

  49. D.E. Cullen, J.H. Hubbell, L. Kissel, EPDL97 The evaluated data library, ‘97 version, Report UCRL-50400 vol. 6, rev. 5 (Lawrence Livermore National Laboratory, Livermore, 1997)

    Google Scholar 

  50. D. Brusa, G. Stutz, J.A. Riveros, J.M. Fernández-Varea, F. Salvat, Nucl. Instrum. Meth. A 379, 167–175 (1996)

    Article  ADS  Google Scholar 

  51. F. Sauter, Ann. Phys. 11, 454–488 (1931)

    Article  Google Scholar 

  52. M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer, Report NBSIR 87-3597 (National Bureau of Standards, Gaithersburg, MD, 1987)

    Google Scholar 

  53. S.T. Perkins, D.E. Cullen, M.H. Chen, J.H. Hubbell, J. Rathkopf, J. Scofield, Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), \(Z = \mathit{1}\mbox{ \textendash }\mathit{100}\), Report UCRL-50400 vol. 30 (Lawrence Livermore National Laboratory, Livermore, CA, 1991)

    Google Scholar 

  54. J.M. Fernández-Varea, R. Mayol, J. Baró, F. Salvat, Nucl. Instrum. Meth. B 73, 447–473 (1993)

    Article  ADS  Google Scholar 

  55. A.J. Walker, ACM Trans. Math. Software 3, 253–256 (1977)

    Article  MATH  Google Scholar 

  56. C. Champion, D. Oubaziz, H. Aouchiche, Y.V. Popov, C. Dal Cappello, Phys. Rev. A 81, 032704 (2010)

    Article  ADS  Google Scholar 

  57. R. Moccia, J. Chem. Phys., 40, 2186–2192 (1964)

    Google Scholar 

  58. J. Neuefeind, C.J. Benmore, B. Tomberli, P.A. Egelstaff, J. Phys.: Cond. Matter 14, L429–L433 (2002)

    Google Scholar 

  59. H. Aouchiche, C. Champion, D. Oubaziz, Radiat. Phys. Chem. 77, 107–114 (2008)

    Article  ADS  Google Scholar 

  60. F. Salvat, Phys. Rev. A, 68, 012708 (2003)

    Article  ADS  Google Scholar 

  61. D.R. Bates, H.S.W. Massey, Philos. Trans. R. Soc. London Ser. A 239, 269–304 (1943)

    Article  ADS  Google Scholar 

  62. N.T. Padial, D.W. Norcross, Phys. Rev. A 29, 1742–1748 (1984)

    Article  ADS  Google Scholar 

  63. A. Jain, Phys. Rev. A 41, 2437–2444 (1990)

    Article  ADS  Google Scholar 

  64. M.E. Riley, D.G. Truhlar, J. Chem. Phys. 63, 2182–2191 (1975)

    Google Scholar 

  65. C. Champion, J. Hanssen, P.-A.Hervieux, J. Chem. Phys. 117, 197–204 (2002)

    Google Scholar 

  66. C. Champion, Phys. Med. Biol. 48, 2147–2168 (2003)

    Article  Google Scholar 

  67. C. Champion, Phys. Med. Biol. 55, 11–32 (2010)

    Article  Google Scholar 

  68. R.A. Kendall, T.H.Jr. Dunning, R.J. Harrisson, J. Chem. Phys. 96, 6796 (1992)

    Google Scholar 

  69. C. Møller, M. Plesset, Phys. Rev. A 46, 618 (1934)

    MATH  Google Scholar 

  70. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  Google Scholar 

  71. J.J. Olivero R.W. Stagat, A.E.S. Green, J.Geophys. Res. 77, 4797–4811 (1972)

    Google Scholar 

  72. A.E.S. Green, S.K. Dutta, J.Geophys. Res. 72, 3933 (1967)

    Article  ADS  Google Scholar 

  73. R.N. Compton, L.G. Christophorou, Phys. Rev. 154, 110–116 (1967)

    Article  ADS  Google Scholar 

  74. C. Champion, C. Le Loirec, Phys. Med. Biol. 51, 1707–1723 (2006)

    Article  Google Scholar 

  75. P.-A. Hervieux, O.A. Fojon, C. Champion, R.D. Rivarola, J. Hanssen, J. Phys. B: At. Mol. Opt. Phys. 39, 409–419 (2006)

    Article  ADS  Google Scholar 

  76. F. Manero, F. Blanco, G. García, Phys. Rev. A 66, 032714 (2002)

    Article  ADS  Google Scholar 

  77. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)

    Article  ADS  Google Scholar 

  78. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 3rd edn. Oxford University Press (1965)

    Google Scholar 

  79. A. Muñoz, F. Blanco, G. García, P.A. Thorn, M.J. Brunger, J.P. Sullivan, S.J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)

    Article  ADS  Google Scholar 

  80. M.C. Fuss, A. Muñoz, J.C. Oller, F. Blanco, D. Almeida, P. Limão-Vieira, T.P.D. Do, M.J. Brunger, G. García, Phys. Rev. A 80, 052709 (2009)

    Article  ADS  Google Scholar 

  81. J.P. Sullivan, A. Jones, P. Caradonna, C. Makochekanwa, S.J. Buckman, Rev. Scient. Instrum. 79, 113105 (2008)

    Article  ADS  Google Scholar 

  82. F. Blanco, G. García, Phys. Lett. A 295, 178 (2002); Phys. Rev. A 67, 022701 (2003)

    Google Scholar 

  83. J.B. Maljković, A. Milosavljević, F. Blanco, D. Šević, G. García, B.P. Marinković, Phys. Rev. A 79, 052706 (2009)

    Article  ADS  Google Scholar 

  84. F. Blanco, G. García, J. Phys. B 42, 145203 (2009)

    Article  ADS  Google Scholar 

  85. D.D. Reid, J.M. Wadehra, Phys. Rev. A 50, 4859 (1994); J.Phys. B 29, L127 (1996)

    Google Scholar 

Download references

Acknowledgments

Work presented in this contribution has been partially supported by the following projects and institutions: Ministerio de Ciencia e Innovación (Project FIS2009-10245), EU Framework Programme (COST Action MP1002) and the Australian Research Council through its Centres of Excellence program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo García Gómez-Tejedor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Muñoz, A. et al. (2012). Monte Carlo Methods to Model Radiation Interactions and Induced Damage. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics