Aerts AM, Zabrocki P, Govaert G, Mathys J, Carmona-Gutierrez D, Madeo F et al (2009) Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett 583(1):113–117
PubMed
CrossRef
CAS
Google Scholar
Allen C, Buttner S, Aragon AD, Thomas J, Meirelles O, Jaetao J et al (2006) Isolation of quiescent and non-quiescent cells from stationary-phase yeast cultures. J Cell Biol 174:89–100
PubMed
CrossRef
CAS
Google Scholar
Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, Sacher A, Engelberg-Kulka H (2009) Escherichia coli MazF leads to the simultaneous selective synthesis of both death proteins and survival proteins. PLoS Genet 5(3):e1000390
PubMed
CrossRef
Google Scholar
Aragon AD, Quiñones GA, Thomas EV, Roy S, Werner-Washburne M (2006) Release of extraction-resistant mRNA in stationary-phase S. cerevisiae produces a massive increase in transcript abundance in response to stress. Genome Biol 7:R9. doi:10.1186/gb-2006-1187-1182-r1189
PubMed
CrossRef
Google Scholar
Aragon AD, Rodriguez AL, Meirelles O, Roy S, Davidson GS, Tapia PH et al (2008) Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol Biol Cell 19(3):1271–1280
PubMed
CrossRef
CAS
Google Scholar
Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:9100–9105
PubMed
CrossRef
CAS
Google Scholar
Bartke A (2008) Insulin and aging. Cell Cycle 7(21):3338–3343
PubMed
CrossRef
CAS
Google Scholar
Bitterman K, Medvedik O, Sinclair D (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67(3):376–399
PubMed
CrossRef
CAS
Google Scholar
Breitenbach M, Laun P, Heeren G, Jarolim S, Frohlich K-U, Wissing S, Pichova A (2003) Yeast as a model for ageing and apoptosis research. In: Nyström T, Osiewacz HD (eds) Topics in current genetics, vol 3. Model systems in aging. Springer, Berlin and Heidelberg, pp 61–97
Google Scholar
Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270
PubMed
CrossRef
CAS
Google Scholar
Buttner S, Bitto A, Ring J, Augsten M, Zabrocki P, Eisenberg T et al (2008) Functional mitochondria are required for alpha-synuclein toxicity in aging yeast. J Biol Chem 283(12):7554–7560
PubMed
CrossRef
Google Scholar
Buttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kraemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175(4):521–525
PubMed
CrossRef
Google Scholar
Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522
PubMed
CrossRef
CAS
Google Scholar
Campisi J, di Fagagna FD (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740
PubMed
CrossRef
CAS
Google Scholar
Casasanto D (2008) Who’s afraid of the big bad whorf? Crosslinguistic differences in temporal language and thought. Lang Learn 58:63–79
CrossRef
Google Scholar
Cheng C, Fabrizio P, Ge HY, Longo VD, Li LM (2007) Inference of transcription modification in long-live yeast strains from their expression profiles. BMC Genomics 8:219
PubMed
CrossRef
Google Scholar
Coyle S, Kroll E (2008) Starvation induces genomic rearrangements and starvation-resilient phenotypes in yeast. Mol Biol Evol 25(2):310–318
PubMed
CrossRef
CAS
Google Scholar
Davidson G, Martin S, Boyack K, Wylie B, Martinez J, Aragon A et al (2007) Robust methods for microarray analysis. In: Akay M (ed) Genomics and proteomics engineering in medicine and biology. IEEE, NJ, pp 99–130
Google Scholar
Davidson GS, Hendrickson B, Johnson DK, Meyers CE, Wylie BN (1998) Knowledge mining with VxInsight: discovery through interaction. J Intell Inf Syst 11:259–285
CrossRef
Google Scholar
Davidson GS, Joe RM, Roy S, Meirelles O, Allen CP, Wilson MR et al (2011) The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 22:988–998
PubMed
CrossRef
CAS
Google Scholar
de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V et al (2009) The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8(1):65–72
PubMed
CrossRef
Google Scholar
Drummond-Barbosa D (2008) Stem cells, their niches and the systemic environment: an aging network. Genetics 180(4):1787–1797
PubMed
CrossRef
Google Scholar
Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F et al (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99(25):16144–16149
PubMed
CrossRef
CAS
Google Scholar
Eisenberg T, Buttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12(5):1011–1023
PubMed
CrossRef
CAS
Google Scholar
Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81
PubMed
CrossRef
CAS
Google Scholar
Fabrizio P, Longo VD (2008) Chronological aging-induced apoptosis in yeast. Biochimica Et Biophysica Acta-Mol Cell Res 1783(7):1280–1285
CrossRef
CAS
Google Scholar
Frohlich KU, Madeo F (2000) Apoptosis in yeast – a monocellular organism exhibits altruistic behaviour. FEBS Lett 473(1):655–660
CrossRef
Google Scholar
Fuge EK, Braun EL, Werner-Washburne M (1994) Protein synthesis in long-term stationary-phase cultures of Saccharomyces cerevisiae. J Bact 176:5802–5813
PubMed
CAS
Google Scholar
Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM (2008) Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 4(10):e1000208
PubMed
CrossRef
Google Scholar
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae [Review]. Microbiol Mol Biol Rev 68(2):187–206
PubMed
CrossRef
CAS
Google Scholar
Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S et al (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164(4):501–507
PubMed
CrossRef
CAS
Google Scholar
Jazwinski JM (1990) An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Am Gen Soc 45:B68–B74
CAS
Google Scholar
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580
PubMed
CrossRef
CAS
Google Scholar
Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496
PubMed
CrossRef
CAS
Google Scholar
Kuningas M, Mooijaart SP, van Heemst D, Zwaan BJ, Slagboom PE, Westendorp RGJ (2008) Genes encoding longevity: from model organisms to humans. Aging Cell 7(2):270–280
PubMed
CrossRef
CAS
Google Scholar
Laun P, Bruschi CV, Dickinson JR, Rinnerthaler M, Heeren G, Schwimbersky R et al (2007) Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing. Nucleic Acids Res 35(22):7514–7526
PubMed
CrossRef
CAS
Google Scholar
Laun P, Pichova A, Madeo F, Heeren G, Kohlwein SD, Frohlich KU et al (2001) Aged yeast mother cells show markers of apoptosis. Yeast 18:S160
Google Scholar
Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – A comparison. Exp Gerontol 41(12):1208–1212
PubMed
CrossRef
CAS
Google Scholar
Lewis DL, Gattie DK (1991) The ecology of quiescent microbes. ASM News 57:27–32
Google Scholar
Lewis K (2000) Programmed death in bacteria. Microbiol Mol Rev 64(3):503–533
CrossRef
CAS
Google Scholar
Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56
PubMed
CrossRef
CAS
Google Scholar
Li L, Lu Y, Qin L-X, Bar-Joseph Z, Werner-Washburne M, Breeden LL (2009) Budding yeast SSD1-V regulates transcript levels of many longevity genes and extends chronological life span in purified quiescent cells. Mol Biol Cell 20:3851–3864
PubMed
CrossRef
CAS
Google Scholar
Longo VD (2009) Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44(1–2):70–74
PubMed
CrossRef
CAS
Google Scholar
Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137(7):1581–1588
PubMed
CrossRef
CAS
Google Scholar
Longo VD, Fabrizio P (2002) Visions & reflections: regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59(6):903–908
PubMed
CrossRef
CAS
Google Scholar
Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33(1):152–163
PubMed
CrossRef
CAS
Google Scholar
Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A et al (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41(4):208–216
PubMed
CrossRef
CAS
Google Scholar
Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734
PubMed
CrossRef
CAS
Google Scholar
Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P et al (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Pol{zeta}-dependent mechanism. J Cell Biol 186:509–523
PubMed
CrossRef
CAS
Google Scholar
Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez A et al (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 15:5295–5305
PubMed
CrossRef
CAS
Google Scholar
Minois N, Frajnt M, Wilson C, Vaupel JW (2005) Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102(2):402–406
PubMed
CrossRef
CAS
Google Scholar
Minois N, Lagona F, Frajnt M, Vaupel JW (2009) Plasticity of death rates in stationary phase in Saccharomyces cerevisiae. Aging Cell 8(1):36–44
PubMed
CrossRef
CAS
Google Scholar
Moore JK, Miller RK (2007) The cyclin-dependent kinase Cdc28p regulates multiple aspects of Kar9p function in yeast. Mol Biol Cell 18(4):1187–1202
PubMed
CrossRef
CAS
Google Scholar
Mota M, Soares EV (1994) Poplulation dynamics of flocculating yeasts. FEMS Microbiol Rev 14:45–52
PubMed
CrossRef
CAS
Google Scholar
Narbonne P, Roy R (2006) Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div 1:1–29
Google Scholar
Nayak BB, Kamiya E, Nishino T, Wada M, Nishimura M, Kogure K (2005) Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting. FEMS Microbiol Ecol 51(2):179–186
PubMed
CrossRef
CAS
Google Scholar
Nishino T, Nayak BB, Kogure K (2003) Density-dependent sorting of physiologically different cells of Vibrio parahaemolyticus. Appl Environ Microbiol 69(6):3569–3572
PubMed
CrossRef
CAS
Google Scholar
Paaby AB, Schmidt PS (2009) Dissecting the genetics of longevity in Drosophila melanogaster. Fly 3(1):29–38
PubMed
CrossRef
CAS
Google Scholar
Parrella E, Longo VD (2008) The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods 46(4):256–262
PubMed
CrossRef
CAS
Google Scholar
Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184
PubMed
CrossRef
CAS
Google Scholar
Qin H, Lu M, Goldfarb D (2008) Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae. PLoS One 3:e2670
PubMed
CrossRef
Google Scholar
Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43(10):876–881
PubMed
CrossRef
CAS
Google Scholar
Rosenberg SM (2009) Life, death, differentiation, and the multicellularity of Bacteria. PLoS Genet 5(3):e1000418
PubMed
CrossRef
Google Scholar
Rossi DJ, Jamieson CHM., Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696
PubMed
CrossRef
CAS
Google Scholar
Shimokawa I, Chiba T, Yamaza H, Komatsu T (2008) Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells 26(5):427–435
PubMed
CAS
Google Scholar
Sinclair D, Mills K, Guarente L (1998) Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52:533–560
PubMed
CrossRef
CAS
Google Scholar
Sniegowski PD (1995) The origin of adaptive mutants: random or nonrandom? J Mol Evol 40:94–101
CrossRef
CAS
Google Scholar
Soares EV, Mota M (1996) Flocculation onset, growth phase, and genealogical age in Saccharomyces cerevisiae. Can J Microbiol 42:539–547
PubMed
CrossRef
CAS
Google Scholar
Stratford M (1993) Yeast flocculation: flocculation onset and receptor availability. Yeast 9(1):85–94
PubMed
CrossRef
CAS
Google Scholar
Sundin GW, Weigand MR (2007) The microbiology of mutability [Review]. FEMS Microbiol Lett 277(1):11–20
PubMed
CrossRef
CAS
Google Scholar
Thorpe PH, Bruno J, Rothstein R (2009) Kinetochore asymmetry defines a single yeast lineage. Proc Natl Acad Sci USA 106:6673–6678
PubMed
CrossRef
CAS
Google Scholar
Wallenfang MR (2007) Aging within the stem cell niche. Dev Cell 13(5):603–604
PubMed
CrossRef
CAS
Google Scholar
Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130(1–2):46–53
PubMed
CrossRef
CAS
Google Scholar
Waskar M, Li YS, Tower J (2005) Stem cell aging in the Drosophila ovary. Age 27(3):201–212
CrossRef
CAS
Google Scholar
Wei M, Fabrizio P, Hu J, Ge HY, Cheng C, Li L et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1):e13
PubMed
CrossRef
Google Scholar
Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401
PubMed
CAS
Google Scholar
Werner-Washburne M, Brown D, Braun E (1991) Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell. J Biol Chem 266(29):19704–19709
PubMed
CAS
Google Scholar
Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Sacccharomyces cerevisiae. Mol Cell Biol 7(7):2568–2577
PubMed
CAS
Google Scholar
Werner-Washburne M, Wylie B, Boyack K, Fuge E, Galbraith J, Weber J et al (2002) Comparative analysis of multiple genome-scale data sets. Genome Res 12(10):1564–1573
PubMed
CrossRef
CAS
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B et al (1999) Functional characterization of the S-cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906
PubMed
CrossRef
CAS
Google Scholar
Wolkow CA (2002) Life span: getting the signal from the nervous system [Review]. Trends Neurosci 25(4):212–216
PubMed
CrossRef
CAS
Google Scholar
Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81
PubMed
CrossRef
CAS
Google Scholar