Aging and the Survival of Quiescent and Non-quiescent Cells in Yeast Stationary-Phase Cultures

  • M. Werner-WashburneEmail author
  • Sushmita Roy
  • George S. Davidson
Part of the Subcellular Biochemistry book series (SCBI, volume 57)


In this chapter, we argue that with careful attention to cell types in stationary-phase cultures of the yeast, S. cerevisiae provide an excellent model system for aging studies and hold much promise in pinpointing the set of causal genes and mechanisms driving aging. Importantly, a more detailed understanding of aging in this single celled organism will also shed light on aging in tissue-complex model organisms such as C. elegans and D. melanogaster. We feel strongly that the relationship between aging in yeast and tissue-complex organisms has been obscured by failure to notice the heterogeneity of stationary-phase cultures and the processes by which distinct cell types arise in these cultures. Although several studies have used yeast stationary-phase cultures for chronological aging, the majority of these studies have assumed that cultures in stationary phase are homogeneously composed of a single cell type. However, genome-scale analyses of yeast stationary-phase cultures have identified two major cell fractions: quiescent and non-quiescent, which we discuss in detail in this chapter. We review evidence that cell populations isolated from these cultures exhibit population-specific phenotypes spanning a range of metabolic and physiological processes including reproductive capacity, apoptosis, differences in metabolic activities, genetic hyper-mutability, and stress responses. The identification, in S. cerevisiae, of multiple sub-populations having differentiated physiological attributes relevant to aging offers an unprecedented opportunity. This opportunity to deeply understand yeast cellular (and population) aging programs will, also, give insight into genomic and metabolic processes in tissue-complex organism, as well as stem cell biology and the origins of differentiation.


Stationary phase quiescent Starvation Non-quiescent Respiration Reactive oxygen species Nomenclature Post-diauxic phase 



We would like to thank all the people who have helped us think about this; Frank Madeo for reviewing the manuscript; and Santos Salinas-Contreras for helping with the figures. This work was funded by a grant from NSF: MCB0645854. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.


  1. Aerts AM, Zabrocki P, Govaert G, Mathys J, Carmona-Gutierrez D, Madeo F et al (2009) Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett 583(1):113–117PubMedCrossRefGoogle Scholar
  2. Allen C, Buttner S, Aragon AD, Thomas J, Meirelles O, Jaetao J et al (2006) Isolation of quiescent and non-quiescent cells from stationary-phase yeast cultures. J Cell Biol 174:89–100PubMedCrossRefGoogle Scholar
  3. Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, Sacher A, Engelberg-Kulka H (2009) Escherichia coli MazF leads to the simultaneous selective synthesis of both death proteins and survival proteins. PLoS Genet 5(3):e1000390PubMedCrossRefGoogle Scholar
  4. Aragon AD, Quiñones GA, Thomas EV, Roy S, Werner-Washburne M (2006) Release of extraction-resistant mRNA in stationary-phase S. cerevisiae produces a massive increase in transcript abundance in response to stress. Genome Biol 7:R9. doi:10.1186/gb-2006-1187-1182-r1189PubMedCrossRefGoogle Scholar
  5. Aragon AD, Rodriguez AL, Meirelles O, Roy S, Davidson GS, Tapia PH et al (2008) Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol Biol Cell 19(3):1271–1280PubMedCrossRefGoogle Scholar
  6. Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:9100–9105PubMedCrossRefGoogle Scholar
  7. Bartke A (2008) Insulin and aging. Cell Cycle 7(21):3338–3343PubMedCrossRefGoogle Scholar
  8. Bitterman K, Medvedik O, Sinclair D (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67(3):376–399PubMedCrossRefGoogle Scholar
  9. Breitenbach M, Laun P, Heeren G, Jarolim S, Frohlich K-U, Wissing S, Pichova A (2003) Yeast as a model for ageing and apoptosis research. In: Nyström T, Osiewacz HD (eds) Topics in current genetics, vol 3. Model systems in aging. Springer, Berlin and Heidelberg, pp 61–97Google Scholar
  10. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270PubMedCrossRefGoogle Scholar
  11. Buttner S, Bitto A, Ring J, Augsten M, Zabrocki P, Eisenberg T et al (2008) Functional mitochondria are required for alpha-synuclein toxicity in aging yeast. J Biol Chem 283(12):7554–7560PubMedCrossRefGoogle Scholar
  12. Buttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kraemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175(4):521–525PubMedCrossRefGoogle Scholar
  13. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522PubMedCrossRefGoogle Scholar
  14. Campisi J, di Fagagna FD (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740PubMedCrossRefGoogle Scholar
  15. Casasanto D (2008) Who’s afraid of the big bad whorf? Crosslinguistic differences in temporal language and thought. Lang Learn 58:63–79CrossRefGoogle Scholar
  16. Cheng C, Fabrizio P, Ge HY, Longo VD, Li LM (2007) Inference of transcription modification in long-live yeast strains from their expression profiles. BMC Genomics 8:219PubMedCrossRefGoogle Scholar
  17. Coyle S, Kroll E (2008) Starvation induces genomic rearrangements and starvation-resilient phenotypes in yeast. Mol Biol Evol 25(2):310–318PubMedCrossRefGoogle Scholar
  18. Davidson G, Martin S, Boyack K, Wylie B, Martinez J, Aragon A et al (2007) Robust methods for microarray analysis. In: Akay M (ed) Genomics and proteomics engineering in medicine and biology. IEEE, NJ, pp 99–130Google Scholar
  19. Davidson GS, Hendrickson B, Johnson DK, Meyers CE, Wylie BN (1998) Knowledge mining with VxInsight: discovery through interaction. J Intell Inf Syst 11:259–285CrossRefGoogle Scholar
  20. Davidson GS, Joe RM, Roy S, Meirelles O, Allen CP, Wilson MR et al (2011) The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 22:988–998PubMedCrossRefGoogle Scholar
  21. de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V et al (2009) The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8(1):65–72PubMedCrossRefGoogle Scholar
  22. Drummond-Barbosa D (2008) Stem cells, their niches and the systemic environment: an aging network. Genetics 180(4):1787–1797PubMedCrossRefGoogle Scholar
  23. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F et al (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99(25):16144–16149PubMedCrossRefGoogle Scholar
  24. Eisenberg T, Buttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12(5):1011–1023PubMedCrossRefGoogle Scholar
  25. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81PubMedCrossRefGoogle Scholar
  26. Fabrizio P, Longo VD (2008) Chronological aging-induced apoptosis in yeast. Biochimica Et Biophysica Acta-Mol Cell Res 1783(7):1280–1285CrossRefGoogle Scholar
  27. Frohlich KU, Madeo F (2000) Apoptosis in yeast – a monocellular organism exhibits altruistic behaviour. FEBS Lett 473(1):655–660CrossRefGoogle Scholar
  28. Fuge EK, Braun EL, Werner-Washburne M (1994) Protein synthesis in long-term stationary-phase cultures of Saccharomyces cerevisiae. J Bact 176:5802–5813PubMedGoogle Scholar
  29. Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM (2008) Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 4(10):e1000208PubMedCrossRefGoogle Scholar
  30. Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae [Review]. Microbiol Mol Biol Rev 68(2):187–206PubMedCrossRefGoogle Scholar
  31. Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S et al (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164(4):501–507PubMedCrossRefGoogle Scholar
  32. Jazwinski JM (1990) An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Am Gen Soc 45:B68–B74Google Scholar
  33. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580PubMedCrossRefGoogle Scholar
  34. Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496PubMedCrossRefGoogle Scholar
  35. Kuningas M, Mooijaart SP, van Heemst D, Zwaan BJ, Slagboom PE, Westendorp RGJ (2008) Genes encoding longevity: from model organisms to humans. Aging Cell 7(2):270–280PubMedCrossRefGoogle Scholar
  36. Laun P, Bruschi CV, Dickinson JR, Rinnerthaler M, Heeren G, Schwimbersky R et al (2007) Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing. Nucleic Acids Res 35(22):7514–7526PubMedCrossRefGoogle Scholar
  37. Laun P, Pichova A, Madeo F, Heeren G, Kohlwein SD, Frohlich KU et al (2001) Aged yeast mother cells show markers of apoptosis. Yeast 18:S160Google Scholar
  38. Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – A comparison. Exp Gerontol 41(12):1208–1212PubMedCrossRefGoogle Scholar
  39. Lewis DL, Gattie DK (1991) The ecology of quiescent microbes. ASM News 57:27–32Google Scholar
  40. Lewis K (2000) Programmed death in bacteria. Microbiol Mol Rev 64(3):503–533CrossRefGoogle Scholar
  41. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56PubMedCrossRefGoogle Scholar
  42. Li L, Lu Y, Qin L-X, Bar-Joseph Z, Werner-Washburne M, Breeden LL (2009) Budding yeast SSD1-V regulates transcript levels of many longevity genes and extends chronological life span in purified quiescent cells. Mol Biol Cell 20:3851–3864PubMedCrossRefGoogle Scholar
  43. Longo VD (2009) Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44(1–2):70–74PubMedCrossRefGoogle Scholar
  44. Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137(7):1581–1588PubMedCrossRefGoogle Scholar
  45. Longo VD, Fabrizio P (2002) Visions & reflections: regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59(6):903–908PubMedCrossRefGoogle Scholar
  46. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33(1):152–163PubMedCrossRefGoogle Scholar
  47. Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A et al (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41(4):208–216PubMedCrossRefGoogle Scholar
  48. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734PubMedCrossRefGoogle Scholar
  49. Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P et al (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Pol{zeta}-dependent mechanism. J Cell Biol 186:509–523PubMedCrossRefGoogle Scholar
  50. Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez A et al (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 15:5295–5305PubMedCrossRefGoogle Scholar
  51. Minois N, Frajnt M, Wilson C, Vaupel JW (2005) Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102(2):402–406PubMedCrossRefGoogle Scholar
  52. Minois N, Lagona F, Frajnt M, Vaupel JW (2009) Plasticity of death rates in stationary phase in Saccharomyces cerevisiae. Aging Cell 8(1):36–44PubMedCrossRefGoogle Scholar
  53. Moore JK, Miller RK (2007) The cyclin-dependent kinase Cdc28p regulates multiple aspects of Kar9p function in yeast. Mol Biol Cell 18(4):1187–1202PubMedCrossRefGoogle Scholar
  54. Mota M, Soares EV (1994) Poplulation dynamics of flocculating yeasts. FEMS Microbiol Rev 14:45–52PubMedCrossRefGoogle Scholar
  55. Narbonne P, Roy R (2006) Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div 1:1–29Google Scholar
  56. Nayak BB, Kamiya E, Nishino T, Wada M, Nishimura M, Kogure K (2005) Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting. FEMS Microbiol Ecol 51(2):179–186PubMedCrossRefGoogle Scholar
  57. Nishino T, Nayak BB, Kogure K (2003) Density-dependent sorting of physiologically different cells of Vibrio parahaemolyticus. Appl Environ Microbiol 69(6):3569–3572PubMedCrossRefGoogle Scholar
  58. Paaby AB, Schmidt PS (2009) Dissecting the genetics of longevity in Drosophila melanogaster. Fly 3(1):29–38PubMedCrossRefGoogle Scholar
  59. Parrella E, Longo VD (2008) The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods 46(4):256–262PubMedCrossRefGoogle Scholar
  60. Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184PubMedCrossRefGoogle Scholar
  61. Qin H, Lu M, Goldfarb D (2008) Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae. PLoS One 3:e2670PubMedCrossRefGoogle Scholar
  62. Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43(10):876–881PubMedCrossRefGoogle Scholar
  63. Rosenberg SM (2009) Life, death, differentiation, and the multicellularity of Bacteria. PLoS Genet 5(3):e1000418PubMedCrossRefGoogle Scholar
  64. Rossi DJ, Jamieson CHM., Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696PubMedCrossRefGoogle Scholar
  65. Shimokawa I, Chiba T, Yamaza H, Komatsu T (2008) Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells 26(5):427–435PubMedGoogle Scholar
  66. Sinclair D, Mills K, Guarente L (1998) Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52:533–560PubMedCrossRefGoogle Scholar
  67. Sniegowski PD (1995) The origin of adaptive mutants: random or nonrandom? J Mol Evol 40:94–101CrossRefGoogle Scholar
  68. Soares EV, Mota M (1996) Flocculation onset, growth phase, and genealogical age in Saccharomyces cerevisiae. Can J Microbiol 42:539–547PubMedCrossRefGoogle Scholar
  69. Stratford M (1993) Yeast flocculation: flocculation onset and receptor availability. Yeast 9(1):85–94PubMedCrossRefGoogle Scholar
  70. Sundin GW, Weigand MR (2007) The microbiology of mutability [Review]. FEMS Microbiol Lett 277(1):11–20PubMedCrossRefGoogle Scholar
  71. Thorpe PH, Bruno J, Rothstein R (2009) Kinetochore asymmetry defines a single yeast lineage. Proc Natl Acad Sci USA 106:6673–6678PubMedCrossRefGoogle Scholar
  72. Wallenfang MR (2007) Aging within the stem cell niche. Dev Cell 13(5):603–604PubMedCrossRefGoogle Scholar
  73. Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130(1–2):46–53PubMedCrossRefGoogle Scholar
  74. Waskar M, Li YS, Tower J (2005) Stem cell aging in the Drosophila ovary. Age 27(3):201–212CrossRefGoogle Scholar
  75. Wei M, Fabrizio P, Hu J, Ge HY, Cheng C, Li L et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1):e13PubMedCrossRefGoogle Scholar
  76. Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401PubMedGoogle Scholar
  77. Werner-Washburne M, Brown D, Braun E (1991) Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell. J Biol Chem 266(29):19704–19709PubMedGoogle Scholar
  78. Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Sacccharomyces cerevisiae. Mol Cell Biol 7(7):2568–2577PubMedGoogle Scholar
  79. Werner-Washburne M, Wylie B, Boyack K, Fuge E, Galbraith J, Weber J et al (2002) Comparative analysis of multiple genome-scale data sets. Genome Res 12(10):1564–1573PubMedCrossRefGoogle Scholar
  80. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B et al (1999) Functional characterization of the S-cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906PubMedCrossRefGoogle Scholar
  81. Wolkow CA (2002) Life span: getting the signal from the nervous system [Review]. Trends Neurosci 25(4):212–216PubMedCrossRefGoogle Scholar
  82. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Werner-Washburne
    • 1
    Email author
  • Sushmita Roy
    • 2
  • George S. Davidson
    • 1
  1. 1.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Broad InstituteCambridgeUSA

Personalised recommendations