Skip to main content

Role of CXCL12 and CXCR4 in Tumor Biology and Metastasis

  • Chapter
  • First Online:
Signaling Pathways and Molecular Mediators in Metastasis

Abstract

Chemokine receptor CXCR4 and its cognate ligand CXCL12, also known as stromal derived factor-1 (SDF-1), have been shown to play an important role in growth and metastasis of various tumors. CXCR4 is the most common chemokine receptor that has been demonstrated to be overexpressed in several cancers. Its overexpression is also correlated with poor clinical outcomes and survival in various cancers, including breast, prostate, and lung. CXCR4/CXCL12 signaling axis plays an important role in organ selective metastasis since CXCR4 overexpressing cancer cells have been shown to metastasize to organs such as bone, lymph nodes, liver, lung, and brain, which produce high amounts of CXCL12 and thus provide a favorable microenvironment. CXCR4/CXCL12 axis has been shown to enhance tumor growth and metastasis by maintaining cancer stem cells and modulating tumor stroma through activation of cancer-associated fibroblasts and recruitment of CXCR4+ endothelial precursor cells, thereby enhancing angiogenesis. CXCR4/CXCL12 axis has been shown to mediate both pro-tumorigenesis and metastasis by activating multiple signaling pathways, including protein tyrosine pathways through activation of Pyk2. Several CXCR4/CXCL12 antagonists/agonists have been shown to have potential therapeutic effects as they significantly inhibit tumor growth and metastasis of various cancers in both in vitro and in vivo mouse models. These studies suggest that the CXCR4/CXCL12 signaling axis is an important target for developing innovative therapies against various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otsuka S, Bebb G (2008) The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol 3:1379–1383

    Article  PubMed  Google Scholar 

  2. Richmond A (2010) Chemokine modulation of the tumor microenvironment. Pigment Cell Melanoma Res 23:312–313

    Article  PubMed  Google Scholar 

  3. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16:2927–2931

    Article  PubMed  CAS  Google Scholar 

  4. Ganju RK, Brubaker SA, Meyer J et al (1998) The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 273:23169–23175

    Article  PubMed  CAS  Google Scholar 

  5. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  6. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  CAS  Google Scholar 

  7. Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197

    Article  PubMed  CAS  Google Scholar 

  8. Goldsmith ZG, Dhanasekaran DN (2007) G protein regulation of MAPK networks. Oncogene 26:3122–3142

    Article  PubMed  CAS  Google Scholar 

  9. Mellado M, Rodriguez-Frade JM, Manes S et al (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19:397–421

    Article  PubMed  CAS  Google Scholar 

  10. Bendall LJ, Baraz R, Juarez J et al (2005) Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 65:3290–3298

    PubMed  CAS  Google Scholar 

  11. Cabioglu N, Summy J, Miller C et al (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65:6493–6497

    Article  PubMed  CAS  Google Scholar 

  12. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P et al (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278:21631–21638

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki Y, Rahman M, Mitsuya H (2001) Diverse transcriptional response of CD4(+) T cells to stromal cell-derived factor (SDF)-1: cell survival promotion and priming effects of SDF-1 on CD4(+) T cells. J Immunol 167:3064–3073

    PubMed  CAS  Google Scholar 

  14. Ward SG (2006) T lymphocytes on the move: chemokines, PI 3-kinase and beyond. Trends Immunol 27:80–87

    Article  PubMed  CAS  Google Scholar 

  15. Barbero S, Bonavia R, Bajetto A et al (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63:1969–1974

    PubMed  CAS  Google Scholar 

  16. Wang JF, Park IW, Groopman JE (2000) Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 95:2505–2513

    PubMed  CAS  Google Scholar 

  17. Zhang XF, Wang JF, Matczak E et al (2001) Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 97:3342–3348

    Article  PubMed  CAS  Google Scholar 

  18. Fernandis AZ, Prasad A, Band H et al (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23:157–167

    Article  PubMed  CAS  Google Scholar 

  19. Ganju RK, Hatch WC, Avraham H et al (1997) RAFTK, a novel member of the focal adhesion kinase family, is phosphorylated and associates with signaling molecules upon activation of mature T lymphocytes. J Exp Med 185:1055–1063

    Article  PubMed  CAS  Google Scholar 

  20. Prasad A, Fernandis AZ, Rao Y et al (2004) Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 279:9115–9124

    Article  PubMed  CAS  Google Scholar 

  21. Chernock RD, Cherla RP, Ganju RK (2001) SHP2 and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways. Blood 97:608–615

    Article  PubMed  CAS  Google Scholar 

  22. Smit L, van der Horst G, Borst J (1996) Formation of Shc/Grb2- and Crk adaptor complexes containing tyrosine phosphorylated Cbl upon stimulation of the B-cell antigen receptor. Oncogene 13:381–389

    PubMed  CAS  Google Scholar 

  23. Thien CB, Langdon WY (2001) Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2:294–307

    Article  PubMed  CAS  Google Scholar 

  24. Peschard P, Park M (2003) Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 3:519–523

    Article  PubMed  CAS  Google Scholar 

  25. Thien CB, Walker F, Langdon WY (2001) RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 7:355–365

    Article  PubMed  CAS  Google Scholar 

  26. Chiang SH, Baumann CA, Kanzaki M et al (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948

    Article  PubMed  CAS  Google Scholar 

  27. Hartley D, Corvera S (1996) Formation of c-Cbl.phosphatidylinositol 3-kinase complexes on lymphocyte membranes by a p56lck-independent mechanism. J Biol Chem 271:21939–21943

    Article  PubMed  CAS  Google Scholar 

  28. Kimura A, Baumann CA, Chiang SH et al (2001) The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc Natl Acad Sci USA 98:9098–9103

    Article  PubMed  CAS  Google Scholar 

  29. Gomez-Mouton C, Abad JL, Mira E et al (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA 98:9642–9647

    Article  PubMed  CAS  Google Scholar 

  30. Krawczyk C, Bachmaier K, Sasaki T et al (2000) Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13:463–473

    Article  PubMed  CAS  Google Scholar 

  31. Manes S, Mira E, Gomez-Mouton C et al (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 18:6211–6220

    Article  PubMed  CAS  Google Scholar 

  32. Meng F, Lowell CA (1998) A beta 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. EMBO J 17:4391–4403

    Article  PubMed  CAS  Google Scholar 

  33. Scaife RM, Langdon WY (2000) c-Cbl localizes to actin lamellae and regulates lamellipodia formation and cell morphology. J Cell Sci 113(Pt 2):215–226

    PubMed  CAS  Google Scholar 

  34. Kukreja P, Abdel-Mageed AB, Mondal D et al (2005) Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 65:9891–9898

    Article  PubMed  CAS  Google Scholar 

  35. Chinni SR, Sivalogan S, Dong Z et al (2006) CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 66:32–48

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, Sun Y, Song W et al (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17:1578–1592

    Article  PubMed  CAS  Google Scholar 

  37. Serrati S, Margheri F, Fibbi G et al (2008) Endothelial cells and normal breast epithelial cells enhance invasion of breast carcinoma cells by CXCR-4-dependent up-regulation of urokinase-type plasminogen activator receptor (uPAR, CD87) expression. J Pathol 214:545–554

    Article  PubMed  CAS  Google Scholar 

  38. Ahmad A, Kong D, Wang Z et al (2009) Down-regulation of uPA and uPAR by 3,3′-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 108:916–925

    Article  PubMed  CAS  Google Scholar 

  39. Dass K, Ahmad A, Azmi AS et al (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34:122–136

    Article  PubMed  CAS  Google Scholar 

  40. Ngo HT, Leleu X, Lee J et al (2008) SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 112:150–158

    Article  PubMed  CAS  Google Scholar 

  41. Sanz-Rodriguez F, Hidalgo A, Teixido J (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97:346–351

    Article  PubMed  CAS  Google Scholar 

  42. Engl T, Relja B, Blumenberg C et al (2006) Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix. Life Sci 78:1784–1793

    Article  PubMed  CAS  Google Scholar 

  43. Engl T, Relja B, Marian D et al (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 8:290–301

    Article  PubMed  CAS  Google Scholar 

  44. Ueda Y, Neel NF, Schutyser E et al (2006) Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Res 66:5665–5675

    Article  PubMed  CAS  Google Scholar 

  45. Rubin JB (2009) Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 19:116–122

    Article  PubMed  CAS  Google Scholar 

  46. Mehta SA, Christopherson KW, Bhat-Nakshatri P et al (2007) Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26:3329–3337

    Article  PubMed  CAS  Google Scholar 

  47. Moskovits N, Kalinkovich A, Bar J et al (2006) p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66:10671–10676

    Article  PubMed  CAS  Google Scholar 

  48. Addadi Y, Moskovits N, Granot D et al (2010) p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res 70:9650–9658

    Article  PubMed  CAS  Google Scholar 

  49. Porcile C, Bajetto A, Barbieri F et al (2005) Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 308:241–253

    Article  PubMed  CAS  Google Scholar 

  50. Hernandez L, Smirnova T, Kedrin D et al (2009) The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12. Cancer Res 69:3221–3227

    Article  PubMed  CAS  Google Scholar 

  51. Cabioglu N, Yazici MS, Arun B et al (2005) CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 11:5686–5693

    Article  PubMed  CAS  Google Scholar 

  52. Li YM, Pan Y, Wei Y et al (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6:459–469

    Article  PubMed  CAS  Google Scholar 

  53. Phillips RJ, Mestas J, Gharaee-Kermani M et al (2005) Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 280:22473–22481

    Article  PubMed  CAS  Google Scholar 

  54. Akekawatchai C, Holland JD, Kochetkova M et al (2005) Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem 280:39701–39708

    Article  PubMed  CAS  Google Scholar 

  55. Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107:20009–20014

    Article  PubMed  CAS  Google Scholar 

  56. Hall JM, Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17:792–803

    Article  PubMed  CAS  Google Scholar 

  57. Rhodes LV, Short SP, Neel NF et al (2011) Cytokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer. Cancer Res 71:603–613

    Article  PubMed  CAS  Google Scholar 

  58. Sun X, Cheng G, Hao M et al (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29:709–722

    Article  PubMed  CAS  Google Scholar 

  59. Fischer T, Nagel F, Jacobs S et al (2008) Reassessment of CXCR4 chemokine receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-2. PLoS One 3:e4069

    Article  PubMed  CAS  Google Scholar 

  60. Schmid BC, Rudas M, Rezniczek GA et al (2004) CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res Treat 84:247–250

    Article  PubMed  CAS  Google Scholar 

  61. Luker KE, Luker GD (2006) Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238:30–41

    Article  PubMed  CAS  Google Scholar 

  62. Kato M, Kitayama J, Kazama S et al (2003) Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 5:R144–R150

    Article  PubMed  CAS  Google Scholar 

  63. Allinen M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  64. Chu QD, Panu L, Holm NT et al (2010) High chemokine receptor CXCR4 level in triple negative breast cancer specimens predicts poor clinical outcome. J Surg Res 159:689–695

    Article  PubMed  CAS  Google Scholar 

  65. Kang Y (2005) Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 5:385–395

    Article  PubMed  CAS  Google Scholar 

  66. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  PubMed  CAS  Google Scholar 

  67. Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552

    Article  PubMed  CAS  Google Scholar 

  68. Kim H, Muller WJ (1999) The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp Cell Res 253:78–87

    Article  PubMed  CAS  Google Scholar 

  69. Price JT, Bonovich MT, Kohn EC (1997) The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol 32:175–253

    Article  PubMed  CAS  Google Scholar 

  70. van Golen KL (2003) Inflammatory breast cancer: relationship between growth factor signaling and motility in aggressive cancers. Breast Cancer Res 5:174–179

    Article  PubMed  Google Scholar 

  71. Harmey JH, Bucana CD, Lu W et al (2002) Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 101:415–422

    Article  PubMed  CAS  Google Scholar 

  72. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  73. Verbeek BS, Adriaansen-Slot SS, Vroom TM et al (1998) Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 425:145–150

    Article  PubMed  CAS  Google Scholar 

  74. Kang H, Watkins G, Douglas-Jones A et al (2005) The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast 14:360–367

    Article  PubMed  Google Scholar 

  75. Hinton CV, Avraham S, Avraham HK (2010) Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis 27:97–105

    Article  PubMed  CAS  Google Scholar 

  76. Murphy PM (2001) Chemokines and the molecular basis of cancer metastasis. N Engl J Med 345:833–835

    Article  PubMed  CAS  Google Scholar 

  77. Chen Y, Stamatoyannopoulos G, Song CZ (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 63:4801–4804

    PubMed  CAS  Google Scholar 

  78. Tamamura H, Hori A, Kanzaki N et al (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550:79–83

    Article  PubMed  CAS  Google Scholar 

  79. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  80. Liang Z, Wu H, Reddy S et al (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 363:542–546

    Article  PubMed  CAS  Google Scholar 

  81. Cabioglu N, Sahin AA, Morandi P et al (2009) Chemokine receptors in advanced breast cancer: differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann Oncol 20:1013–1019

    Article  PubMed  CAS  Google Scholar 

  82. Kim R, Arihiro K, Emi M et al (2006) Potential role of HER-2; in primary breast tumor with bone metastasis. Oncol Rep 15:1477–1484

    PubMed  CAS  Google Scholar 

  83. Hirbe AC, Morgan EA, Weilbaecher KN (2010) The CXCR4/SDF-1 chemokine axis: a potential therapeutic target for bone metastases? Curr Pharm Des 16:1284–1290

    Article  PubMed  CAS  Google Scholar 

  84. Struckmann K, Mertz K, Steu S et al (2008) pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol 214:464–471

    Article  PubMed  CAS  Google Scholar 

  85. Schioppa T, Uranchimeg B, Saccani A et al (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198:1391–1402

    Article  PubMed  CAS  Google Scholar 

  86. Staller P, Sulitkova J, Lisztwan J et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425:307–311

    Article  PubMed  CAS  Google Scholar 

  87. Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62:7203–7206

    PubMed  CAS  Google Scholar 

  88. Castellone MD, Guarino V, De Falco V et al (2004) Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 23:5958–5967

    Article  PubMed  CAS  Google Scholar 

  89. Tarnowski M, Grymula K, Reca R et al (2010) Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas. Mol Cancer Res 8:1–14

    Article  PubMed  CAS  Google Scholar 

  90. Su L, Zhang J, Xu H et al (2005) Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res 11:8273–8280

    Article  PubMed  CAS  Google Scholar 

  91. Na IK, Scheibenbogen C, Adam C et al (2008) Nuclear expression of CXCR4 in tumor cells of non-small cell lung cancer is correlated with lymph node metastasis. Hum Pathol 39:1751–1755

    Article  PubMed  CAS  Google Scholar 

  92. Wagner PL, Hyjek E, Vazquez MF et al (2009) CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J Thorac Cardiovasc Surg 137:615–621

    Article  PubMed  CAS  Google Scholar 

  93. Su LP, Zhang JP, Xu HB et al (2005) The role of CXCR4 in lung cancer metastasis and its possible mechanism. Zhonghua Yi Xue Za Zhi 85:1190–1194

    PubMed  CAS  Google Scholar 

  94. Chen G, Wang Z, Liu XY et al (2011) High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J Surg 35:56–61

    Article  PubMed  Google Scholar 

  95. Liu YL, Yu JM, Song XR et al (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5:1320–1326

    Article  PubMed  CAS  Google Scholar 

  96. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    Article  PubMed  CAS  Google Scholar 

  97. Burger M, Glodek A, Hartmann T et al (2003) Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 22:8093–8101

    Article  PubMed  CAS  Google Scholar 

  98. Hartmann TN, Burger JA, Glodek A et al (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24:4462–4471

    Article  PubMed  CAS  Google Scholar 

  99. Kijima T, Maulik G, Ma PC et al (2002) Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res 62:6304–6311

    PubMed  CAS  Google Scholar 

  100. Molina JR, Adjei AA, Jett JR (2006) Advances in chemotherapy of non-small cell lung cancer. Chest 130:1211–1219

    Article  PubMed  CAS  Google Scholar 

  101. Kryczek I, Wei S, Keller E et al (2007) Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 292:C987–C995

    Article  PubMed  CAS  Google Scholar 

  102. Koshiba T, Hosotani R, Miyamoto Y et al (2000) Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 6:3530–3535

    PubMed  CAS  Google Scholar 

  103. Taichman RS, Cooper C, Keller ET et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837

    PubMed  CAS  Google Scholar 

  104. Schimanski CC, Schwald S, Simiantonaki N et al (2005) Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 11:1743–1750

    Article  PubMed  CAS  Google Scholar 

  105. Tachibana K, Hirota S, Iizasa H et al (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    Article  PubMed  CAS  Google Scholar 

  106. Kim M, Koh YJ, Kim KE et al (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70:10411–10421

    Article  PubMed  CAS  Google Scholar 

  107. Xiang Z, Zeng Z, Tang Z et al (2009) Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J 15:519–525

    Article  PubMed  Google Scholar 

  108. Speetjens FM, Liefers GJ, Korbee CJ et al (2009) Nuclear localization of CXCR4 determines prognosis for colorectal cancer patients. Cancer Microenviron 2:1–7

    Article  PubMed  CAS  Google Scholar 

  109. Wang L, Wang Z, Yang B et al (2009) CXCR4 nuclear localization follows binding of its ligand SDF-1 and occurs in metastatic but not primary renal cell carcinoma. Oncol Rep 22:1333–1339

    PubMed  CAS  Google Scholar 

  110. Wang L, Yang B, Yang Q et al (2009) Strong expression of chemokine receptor CXCR4 by renal cell carcinoma cells correlates with metastasis. Clin Exp Metastasis 26:1049–1054

    Article  PubMed  CAS  Google Scholar 

  111. Wang LH, Liu Q, Xu B et al (2010) Identification of nuclear localization sequence of CXCR4 in renal cell carcinoma by constructing expression plasmids of different deletants. Plasmid 63:68–72

    Article  PubMed  CAS  Google Scholar 

  112. Sun YX, Wang J, Shelburne CE et al (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89:462–473

    Article  PubMed  CAS  Google Scholar 

  113. Sun YX, Schneider A, Jung Y et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20:318–329

    Article  PubMed  CAS  Google Scholar 

  114. Gladson CL, Welch DR (2008) New insights into the role of CXCR4 in prostate cancer metastasis. Cancer Biol Ther 7:1849–1851

    Article  PubMed  CAS  Google Scholar 

  115. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    Article  PubMed  Google Scholar 

  116. Raman D, Baugher PJ, Thu YM et al (2007) Role of chemokines in tumor growth. Cancer Lett 256:137–165

    Article  PubMed  CAS  Google Scholar 

  117. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  118. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  PubMed  CAS  Google Scholar 

  119. Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  PubMed  CAS  Google Scholar 

  120. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  121. Jacobs TW, Byrne C, Colditz G et al (1999) Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N Engl J Med 340:430–436

    Article  PubMed  CAS  Google Scholar 

  122. Mueller MM, Fusenig NE (2004) Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  123. Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250:273–283

    Article  PubMed  CAS  Google Scholar 

  124. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  125. Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  126. Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59

    Article  PubMed  CAS  Google Scholar 

  127. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  128. Liu BY, Soloviev I, Chang P et al (2010) Stromal cell-derived factor-1/CXCL12 contributes to MMTV-Wnt1 tumor growth involving Gr1+CD11b+ cells. PLoS One 5:e8611

    Article  PubMed  CAS  Google Scholar 

  129. Hiratsuka S, Duda DG, Huang Y et al (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA 108:302–307

    Article  PubMed  CAS  Google Scholar 

  130. Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  PubMed  CAS  Google Scholar 

  131. Darash-Yahana M, Pikarsky E, Abramovitch R et al (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18:1240–1242

    PubMed  CAS  Google Scholar 

  132. Beider K, Abraham M, Begin M et al (2009) Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS One 4:e5125

    Article  PubMed  CAS  Google Scholar 

  133. Wang J, Dai J, Jung Y et al (2007) A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 67:149–159

    Article  PubMed  CAS  Google Scholar 

  134. Yang L, DeBusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  135. Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  PubMed  CAS  Google Scholar 

  136. De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  PubMed  CAS  Google Scholar 

  137. Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  PubMed  CAS  Google Scholar 

  138. Purhonen S, Palm J, Rossi D et al (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625

    Article  PubMed  CAS  Google Scholar 

  139. Wels J, Kaplan RN, Rafii S et al (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  PubMed  CAS  Google Scholar 

  140. Guleng B, Tateishi K, Ohta M et al (2005) Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res 65:5864–5871

    Article  PubMed  CAS  Google Scholar 

  141. Burger JA, Peled A (2009) CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23:43–52

    Article  PubMed  CAS  Google Scholar 

  142. De Clercq E, Yamamoto N, Pauwels R et al (1992) Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci USA 89:5286–5290

    Article  PubMed  Google Scholar 

  143. De Clercq E, Yamamoto N, Pauwels R et al (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 38:668–674

    PubMed  Google Scholar 

  144. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587

    Article  PubMed  CAS  Google Scholar 

  145. Nimmagadda S, Pullambhatla M, Stone K et al (2010) Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res 70:3935–3944

    Article  PubMed  CAS  Google Scholar 

  146. Burger JA, Stewart DJ (2009) CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs 18:481–490

    Article  PubMed  CAS  Google Scholar 

  147. Yoon Y, Liang Z, Zhang X et al (2007) CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res 67:7518–7524

    Article  PubMed  CAS  Google Scholar 

  148. Liang Z, Yoon Y, Votaw J et al (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65:967–971

    PubMed  CAS  Google Scholar 

  149. Wong D, Korz W (2008) Translating an Antagonist of Chemokine Receptor CXCR4: from bench to bedside. Clin Cancer Res 14:7975–7980

    Article  PubMed  CAS  Google Scholar 

  150. Wong RS, Bodart V, Metz M et al (2008) Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol Pharmacol 74:1485–1495

    Article  PubMed  CAS  Google Scholar 

  151. Kim SY, Lee CH, Midura BV et al (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25:201–211

    Article  PubMed  CAS  Google Scholar 

  152. Porvasnik S, Sakamoto N, Kusmartsev S et al (2009) Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 69:1460–1469

    Article  PubMed  CAS  Google Scholar 

  153. Richert MM, Vaidya KS, Mills CN et al (2009) Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep 21:761–767

    PubMed  CAS  Google Scholar 

  154. Hassan S, Buchanan M, Jahan K et al (2011) CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 129(1):225–232

    Article  PubMed  CAS  Google Scholar 

  155. Sun YX, Pedersen EA, Shiozawa Y et al (2008) CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis 25:765–776

    Article  PubMed  CAS  Google Scholar 

  156. Ghosh S, Preet A, Groopman JE et al (2006) Cannabinoid receptor CB2 modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes. Mol Immunol 43:2169–2179

    Article  PubMed  CAS  Google Scholar 

  157. Qamri Z, Preet A, Nasser MW et al (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129

    Article  PubMed  CAS  Google Scholar 

  158. Caffarel MM, Andradas C, Mira E et al (2010) Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer 9:196

    Article  PubMed  CAS  Google Scholar 

  159. Prasad A, Paruchuri V, Preet A et al (2008) Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 283:26624–26633

    Article  PubMed  CAS  Google Scholar 

  160. Prasad A, Qamri Z, Wu J et al (2007) Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 82:465–476

    Article  PubMed  CAS  Google Scholar 

  161. Bashaw GJ, Goodman CS (1999) Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 97:917–926

    Article  PubMed  CAS  Google Scholar 

  162. Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10:95–102

    Article  PubMed  CAS  Google Scholar 

  163. Li HS, Chen JH, Wu W et al (1999) Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96:807–818

    Article  PubMed  CAS  Google Scholar 

  164. Ringstedt T, Braisted JE, Brose K et al (2000) Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. J Neurosci 20:4983–4991

    PubMed  CAS  Google Scholar 

  165. Wu W, Wong K, Chen J et al (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400:331–336

    Article  PubMed  CAS  Google Scholar 

  166. Wu JY, Feng L, Park HT et al (2001) The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410:948–952

    Article  PubMed  CAS  Google Scholar 

  167. Marlow R, Strickland P, Lee JS et al (2008) SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 68:7819–7827

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh K. Ganju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ganju, R.K., Deol, Y.S., Nasser, M.W. (2011). Role of CXCL12 and CXCR4 in Tumor Biology and Metastasis. In: Fatatis, A. (eds) Signaling Pathways and Molecular Mediators in Metastasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2558-4_9

Download citation

Publish with us

Policies and ethics