Advertisement

Cellular and Molecular Biology of Cancer Cell Extravasation

  • J. Matthew Barnes
  • Michael D. Henry
Chapter

Abstract

Hematogenous metastasis involves the entry of cancer cells into the circulation at a primary tumor site and the extravasation of those cells at a secondary organ which may ultimately support the growth of a metastatic tumor. Although extravasation is likely an obligate step in metastasis, it is relatively poorly understood in part due the difficulty studying this process in appropriate experimental models in vivo. Thus, there remain open questions about how cancer cells interact with the vascular wall during this process including the extent to which non-selective mechanisms such as size restriction versus specific adhesive interactions determine the behavior of extravasating cancer cells; how cancer cells cross the endothelium; and the degree to which extravasation limits the overall efficiency of metastasis. The answers to these questions are influenced by specific properties of both the cancer cells and the nature of the vascular bed involved. In this Chapter, we review our current understanding of the cellular and molecular biology of cancer cell extravasation and discuss how this knowledge impacts clinical issues related to the biology of circulating tumor cells and cancer therapy.

Keywords

Melanoma Cell Circulate Tumor Cell Tumor Cell Adhesion Metastatic Colonization Leukocyte Extravasation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CTC

Circulating tumor cell

DTC

Disseminated tumor cell

EMT

Epithelial-to-mesenchymal transition

EpCAM

Epithelial cell adhesion molecule

MET

Mesenchymal-to-epithelial transition

SCID

Severe and combined immune deficient

TEM

Trans-endothelial migration

Notes

Acknowledgements

We thank Jones Nauseef for critical reading of the manuscript. JMB was supported by a Department of Defense pre-doctoral fellowship, PC094754. Work on cancer cell extravasation in the Henry lab has been supported by a Grant-in-Aid from the American Heart Association.

References

  1. 1.
    Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11(5):366–378PubMedCrossRefGoogle Scholar
  2. 2.
    Friedl P, Weigelin B (2008) Interstitial leukocyte migration and immune function. Nat Immunol 9(9):960–969PubMedCrossRefGoogle Scholar
  3. 3.
    Vestweber D (2007) Adhesion and signaling molecules controlling the transmigration of ­leukocytes through endothelium. Immunol Rev 218:178–196PubMedCrossRefGoogle Scholar
  4. 4.
    Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10PubMedCrossRefGoogle Scholar
  5. 5.
    Miles FL et al (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25(4):305–324PubMedCrossRefGoogle Scholar
  6. 6.
    Kopp HG et al (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356CrossRefGoogle Scholar
  7. 7.
    Zlotnik A (2006) Chemokines and cancer. Int J Cancer 119(9):2026–2029PubMedCrossRefGoogle Scholar
  8. 8.
    Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedCrossRefGoogle Scholar
  9. 9.
    Hart CA et al (2005) Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process. Br J Cancer 92(3):503–512PubMedGoogle Scholar
  10. 10.
    van Golen KL et al (2008) CCL2 induces prostate cancer transendothelial cell migration via activation of the small GTPase Rac. J Cell Biochem 104(5):1587–1597PubMedCrossRefGoogle Scholar
  11. 11.
    Minn AJ et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115(1):44–55PubMedGoogle Scholar
  12. 12.
    Jamieson WL et al (2008) CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68(6):1715–1722PubMedCrossRefGoogle Scholar
  13. 13.
    Barthel SR et al (2009) Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc Natl Acad Sci U S A 106(46):19491–19496PubMedCrossRefGoogle Scholar
  14. 14.
    Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767PubMedCrossRefGoogle Scholar
  15. 15.
    Luboshits G et al (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59(18):4681–4687PubMedGoogle Scholar
  16. 16.
    Salomon D et al (1992) Extrajunctional distribution of N-cadherin in cultured human endothelial cells. J Cell Sci 102(Pt 1):7–17PubMedGoogle Scholar
  17. 17.
    Voura EB, Sandig M, Siu CH (1998) Cell-cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43(3):265–275PubMedCrossRefGoogle Scholar
  18. 18.
    Qi J et al (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16(9):4386–4397PubMedCrossRefGoogle Scholar
  19. 19.
    Qi J et al (2006) Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol Biol Cell 17(3):1261–1272PubMedCrossRefGoogle Scholar
  20. 20.
    Drake JM et al (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20(8):2207–2217PubMedCrossRefGoogle Scholar
  21. 21.
    Sequeira L et al (2008) Rho GTPases in PC-3 prostate cancer cell morphology, invasion and tumor cell diapedesis. Clin Exp Metastasis 25(5):569–579PubMedCrossRefGoogle Scholar
  22. 22.
    Strell C et al (2007) Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci 64(24):3306–3316PubMedCrossRefGoogle Scholar
  23. 23.
    Wu QD et al (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280(4):C814–C822PubMedGoogle Scholar
  24. 24.
    Dong C et al (2005) Melanoma cell extravasation under flow conditions is modulated by ­leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2(3):145–159PubMedGoogle Scholar
  25. 25.
    Borsig L et al (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A 99(4):2193–2198PubMedCrossRefGoogle Scholar
  26. 26.
    Camerer E et al (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401PubMedCrossRefGoogle Scholar
  27. 27.
    Crissman JD et al (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48(14):4065–4072PubMedGoogle Scholar
  28. 28.
    Warren BA, Vales O (1972) The adhesion of thromboplastic tumour emboli to vessel walls in vivo. Br J Exp Pathol 53(3):301–313PubMedGoogle Scholar
  29. 29.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899PubMedCrossRefGoogle Scholar
  30. 30.
    Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci U S A 76(11):5704–5708PubMedCrossRefGoogle Scholar
  31. 31.
    Ewing, J., Neoplastic Diseases. 1928.Google Scholar
  32. 32.
    van der Meer JW et al (1982) Characteristics of human monocytes cultured in the Teflon culture bag. Immunology 47(4):617–625PubMedGoogle Scholar
  33. 33.
    Vona G et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63PubMedCrossRefGoogle Scholar
  34. 34.
    Zheng S et al (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162(2):154–161PubMedCrossRefGoogle Scholar
  35. 35.
    Doerschuk CM et al (1993) Comparison of neutrophil and capillary diameters and their ­relation to neutrophil sequestration in the lung. J Appl Physiol 74(6):3040–3045PubMedGoogle Scholar
  36. 36.
    Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45(4):773–782PubMedGoogle Scholar
  37. 37.
    Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66(4):550–568PubMedGoogle Scholar
  38. 38.
    Morris VL et al (1993) Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin Exp Metastasis 11(5):377–390PubMedCrossRefGoogle Scholar
  39. 39.
    Morris VL et al (1994) Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metastasis 12(6):357–367PubMedCrossRefGoogle Scholar
  40. 40.
    Koop S et al (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55(12):2520–2523PubMedGoogle Scholar
  41. 41.
    Luzzi KJ et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873PubMedCrossRefGoogle Scholar
  42. 42.
    Koop S et al (1996) Independence of metastatic ability and extravasation: metastatic ras-­transformed and control fibroblasts extravasate equally well. Proc Natl Acad Sci U S A 93(20):11080–11084PubMedCrossRefGoogle Scholar
  43. 43.
    Chambers AF et al (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84(10):797–803PubMedCrossRefGoogle Scholar
  44. 44.
    Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis ­formation. Nat Med 16(1):116–122PubMedCrossRefGoogle Scholar
  45. 45.
    Weis S et al (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167(2):223–229PubMedCrossRefGoogle Scholar
  46. 46.
    Glinskii OV et al (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7(5):522–527PubMedCrossRefGoogle Scholar
  47. 47.
    Wang X et al (2005) Beta3 integrins facilitate matrix interactions during transendothelial migration of PC3 prostate tumor cells. Prostate 63(1):65–80PubMedCrossRefGoogle Scholar
  48. 48.
    Bauer K, Mierke C, Behrens J (2007) Expression profiling reveals genes associated with transendothelial migration of tumor cells: a functional role for alphavbeta3 integrin. Int J Cancer 121(9):1910–1918PubMedCrossRefGoogle Scholar
  49. 49.
    Wang H et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate ­pulmonary arrest and metastasis. J Cell Biol 164(6):935–941PubMedCrossRefGoogle Scholar
  50. 50.
    Hallmann R et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000PubMedCrossRefGoogle Scholar
  51. 51.
    Schluter K et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169(3):1064–1073PubMedCrossRefGoogle Scholar
  52. 52.
    Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68(13):5167–5176PubMedCrossRefGoogle Scholar
  53. 53.
    Al-Mehdi AB et al (2000) Intravascular origin of metastasis from the proliferation of ­endothelium-attached tumor cells: a new model for metastasis. Nat Med 6(1):100–102PubMedCrossRefGoogle Scholar
  54. 54.
    Wong CW et al (2002) Intravascular location of breast cancer cells after spontaneous ­metastasis to the lung. Am J Pathol 161(3):749–753PubMedCrossRefGoogle Scholar
  55. 55.
    Iwasaki T (1915) Histological and experimental observations on the destruction of tumor cells in the blood vessels. J Pathol Bacteriol 20:85–105CrossRefGoogle Scholar
  56. 56.
    Takahashi M (1915) An experimental study of metastasis. J Pathol Bacteriol 20:1–13CrossRefGoogle Scholar
  57. 57.
    Crissman JD et al (1985) Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53(4):470–478PubMedGoogle Scholar
  58. 58.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMedGoogle Scholar
  59. 59.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284PubMedCrossRefGoogle Scholar
  60. 60.
    Geldof AA (1997) Models for cancer skeletal metastasis: a reappraisal of Batson’s plexus. Anticancer Res 17(3A):1535–1539PubMedGoogle Scholar
  61. 61.
    Riethdorf S, Wikman H, Pantel K (2008) Review: Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 123(9):1991–2006PubMedCrossRefGoogle Scholar
  62. 62.
    Abbott NJ et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25PubMedCrossRefGoogle Scholar
  63. 63.
    Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight ­junctions intact. Acta Neuropathol 109(2):181–190PubMedCrossRefGoogle Scholar
  64. 64.
    Weil RJ et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920PubMedCrossRefGoogle Scholar
  65. 65.
    Lee TH et al (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular ­endothelial cell permeability. J Biol Chem 278(7):5277–5284PubMedCrossRefGoogle Scholar
  66. 66.
    Kim LS et al (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21(2):107–118PubMedCrossRefGoogle Scholar
  67. 67.
    Reichen J (1999) The role of the sinusoidal endothelium in liver function. News Physiol Sci 14:117–121PubMedGoogle Scholar
  68. 68.
    Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190PubMedCrossRefGoogle Scholar
  69. 69.
    Martin MD et al (2010) Rapid extravasation and establishment of breast cancer micrometastases in the liver microenvironment. Mol Cancer Res 8(10):1319–1327PubMedCrossRefGoogle Scholar
  70. 70.
    Haier J et al (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7(4):507–514; discussion 514–5PubMedCrossRefGoogle Scholar
  71. 71.
    Scherbarth S, Orr FW (1997) Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res 57(18):4105–4110PubMedGoogle Scholar
  72. 72.
    Gout S, Tremblay PL, Huot J (2008) Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis 25(4):335–344PubMedCrossRefGoogle Scholar
  73. 73.
    Rosenow F et al (2008) Integrins as antimetastatic targets of RGD-independent snake venom components in liver metastasis [corrected]. Neoplasia 10(2):168–176PubMedCrossRefGoogle Scholar
  74. 74.
    Downey GP et al (1993) Neutrophil sequestration and migration in localized pulmonary inflammation. Capillary localization and migration across the interalveolar septum. Am Rev Respir Dis 147(1):168–176PubMedCrossRefGoogle Scholar
  75. 75.
    Doerschuk CM (2001) Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 8(2):71–88PubMedGoogle Scholar
  76. 76.
    Doerschuk CM (2000) Leukocyte trafficking in alveoli and airway passages. Respir Res 1(3):136–140PubMedCrossRefGoogle Scholar
  77. 77.
    Brown DM, Ruoslahti E (2004) Metadherin, a cell surface protein in breast tumors that ­mediates lung metastasis. Cancer Cell 5(4):365–374PubMedCrossRefGoogle Scholar
  78. 78.
    Gupta GP et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770PubMedCrossRefGoogle Scholar
  79. 79.
    Padua D et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through ­angiopoietin-like 4. Cell 133(1):66–77PubMedCrossRefGoogle Scholar
  80. 80.
    Weiss L et al (1992) Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis. Int J Cancer 50(1):103–107PubMedCrossRefGoogle Scholar
  81. 81.
    Weiss L (1991) Deformation-driven, lethal damage to cancer cells. Its contribution to metastatic inefficiency. Cell Biophys 18(2):73–79PubMedGoogle Scholar
  82. 82.
    Tarin D et al (1984) Clinicopathological observations on metastasis in man studied in patients treated with peritoneovenous shunts. Br Med J (Clin Res Ed) 288(6419):749–751CrossRefGoogle Scholar
  83. 83.
    Podsypanina K et al (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321(5897):1841–1844PubMedCrossRefGoogle Scholar
  84. 84.
    Thiery JP et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890PubMedCrossRefGoogle Scholar
  85. 85.
    Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746PubMedCrossRefGoogle Scholar
  86. 86.
    Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454PubMedCrossRefGoogle Scholar
  87. 87.
    Spaderna S et al (2008) The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68(2):537–544PubMedCrossRefGoogle Scholar
  88. 88.
    Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66(5):773–787PubMedCrossRefGoogle Scholar
  89. 89.
    Tsuji T et al (2008) Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68(24):10377–10386PubMedCrossRefGoogle Scholar
  90. 90.
    Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedCrossRefGoogle Scholar
  91. 91.
    Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791PubMedCrossRefGoogle Scholar
  92. 92.
    Hayes DF et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14 Pt 1):4218–4224PubMedCrossRefGoogle Scholar
  93. 93.
    Fehm T et al (2002) Cytogenetic evidence that circulating epithelial cells in patients with ­carcinoma are malignant. Clin Cancer Res 8(7):2073–2084PubMedGoogle Scholar
  94. 94.
    Morgan TM et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683PubMedCrossRefGoogle Scholar
  95. 95.
    Fehm T et al (2008) Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance. Breast Cancer Res 10(Suppl 1):S1PubMedCrossRefGoogle Scholar
  96. 96.
    Li H, Price DK, Figg WD (2007) ADH1, an N-cadherin inhibitor, evaluated in preclinical models of angiogenesis and androgen-independent prostate cancer. Anticancer Drugs 18(5):563–568PubMedCrossRefGoogle Scholar
  97. 97.
    Tanaka H et al (2010) Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 16(12):1414–1420PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departments of Molecular Physiology and Biophysics and Pathology, Holden Comprehensive Cancer CenterUniversity of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations